Cargando…
Obstructive sleep apnea as a risk factor for primary open angle glaucoma and ocular hypertension in a monocentric pilot study
BACKGROUND: Both glaucoma and obstructive sleep apnea (OSA) are widespread diseases. OSA may presumably partly cause or worsen glaucoma, although the etiopathogenesis is unclear. Here we analyze for the first time the possible association between different glaucoma phenotypes and OSA. METHODS: 110 p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545869/ https://www.ncbi.nlm.nih.gov/pubmed/33032589 http://dx.doi.org/10.1186/s12931-020-01533-7 |
Sumario: | BACKGROUND: Both glaucoma and obstructive sleep apnea (OSA) are widespread diseases. OSA may presumably partly cause or worsen glaucoma, although the etiopathogenesis is unclear. Here we analyze for the first time the possible association between different glaucoma phenotypes and OSA. METHODS: 110 patients (47 females, 63 males; median age 64.3 years, median BMI 26.62 kg/m(2)) with suspected glaucoma and without any prior diagnosis of OSA were prospectively studied by one-night home sleep apnea testing (HSAT), 101 of the patients were analyzed. HSAT parameters, like apnea hypopnea index (AHI) and oxygen desaturation index as well as opthalmological parameters like intraocular pressure (IOP) and mean defect depth (MD) were collected. Moreover, HSAT results were compared across four phenotypic groups: primary open angle glaucoma (POAG), low-tension-glaucoma (LTG), ocular hypertension (OH), and controls. RESULTS: There was no strong correlation between IOP or MD and AHI. BMI, age and gender did not differ between groups. Significant differences between POAG and LTG were found for all HSAT parameters. The AHI showed the most prominent group difference (Wilcoxon-Kruskal-Wallis rank sum test was highly significant with chi(2) = 22, df = 3 p < 0.0001) with severely lower event rates in the LTG (9.45/h) compared to POAG (22.7/h) and controls (21.9/h; p < 0.0001 and 0.02, respectively). Highly significant differences were found between the four groups regarding AHI (Chi(2) = 22, df = 3, p < 0.0001) with significantly lower events per hour in the LTG compared to POAG (Hodges-Lehmann = − 13.8, 95% CI (− 18.6 – − 8.8; p < 0.0001) and to controls (Hodges-Lehmann = 12.1, 95% CI -19.9 – − 2.4; p < 0.02). Severe and moderate OSA was more prevalent in POAG (69.8%) and OH (33.3%) than in LTG (9%). The effect of the glaucoma phenotype on the AHI was more prominent in females (p = 0.0006) than in males (p = 0.011). CONCLUSION: Although physical endpoints, such as MD and IOP, do not correlate with AHI, there was a strong correlation between the POAG and OH clinical glaucoma phenotypes and the AHI. Further studies should investigate the necessity to test routine screening for OSA by HSAT in patients with diagnosed POAG and OH. Besides, some characteristics of LTG differed widely from other glaucoma types and controls. LTG patients had a significantly lower rate of OSA compared to other glaucoma types and even controls. This might be due to a different pathogenesis of LTG. TRIAL REGISTRATION: Retrospectively registered at DRKS (nr. S00021201) on April 9th 2020. |
---|