Cargando…

Spatial distribution of iron rich foods consumption and its associated factors among children aged 6–23 months in Ethiopia: spatial and multilevel analysis of 2016 Ethiopian demographic and health survey

BACKGROUND: Micronutrient deficiencies are the most prevalent nutritional deficiencies that cause serious developmental problems in the globe. The aim of this study was to assess the spatial distribution of iron rich foods consumption and its associated factors among children aged 6–23 months in Eth...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiruneh, Sofonyas Abebaw, Ayele, Belete Achamyelew, Yitbarek, Getachew Yideg, Asnakew, Desalegn Tesfa, Engidaw, Melaku Tadege, Gebremariam, Alemayehu Digssie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545915/
https://www.ncbi.nlm.nih.gov/pubmed/33032619
http://dx.doi.org/10.1186/s12937-020-00635-8
Descripción
Sumario:BACKGROUND: Micronutrient deficiencies are the most prevalent nutritional deficiencies that cause serious developmental problems in the globe. The aim of this study was to assess the spatial distribution of iron rich foods consumption and its associated factors among children aged 6–23 months in Ethiopia. METHODS: The data retrieved from the standard Ethiopian Demographic and Health Survey 2016 dataset with a total sample size of 3055 children aged 6–23 months. Spatial scan statistics done using Kuldorff’s SaTScan version 9.6 software. ArcGIS version 10.7 software used to visualize spatial distribution for poor consumption of iron rich foods. Multilevel mixed-effects logistic regression analysis employed to identify the associated factors for good consumption of iron-rich foods. Level of statistical significance was declared at a two-sided P-value < 0.05. RESULTS: Overall, 21.41% (95% CI: 19.9–22.9) of children aged 6–23 months had good consumption of iron rich foods in Ethiopia. Poor consumption of iron rich foods highly clustered at Southern Afar, Southeastern Amhara and Tigray, and the Northern part of Somali Regional States of Ethiopia. In spatial scan statistics, children aged 6–23 months living in the most likely cluster were 21% more likely vulnerable to poor consumption of iron rich foods than those living outside the window (RR = 1.21, P-value < 0.001). Child aged 12–17 months (AOR = 1.90, 95% CI: 1.45–2.49) and 18–23 months (AOR = 2.05, 95% CI: 1.55–2.73), primary (AOR = 1.42, 95% CI:1.06–1.87) and secondary and above (AOR = 2.26, 95% CI: 1.47–3.46) mother’s education level, rich (AOR = 1.49, 95% CI: 1.04–2.13) and middle (AOR = 1.83, 95% CI: 1.31–2.57) household wealth status, Amhara (AOR = 0.24, 95% CI: 0.09–0.60), Afar (AOR = 0.38, 95% CI: 0.17–0.84), and Harari (AOR = 2.11, 95% CI: 1.02–4.39) regional states of Ethiopia were statistically significant factors for good consumption of iron rich foods. CONCLUSION: Overall, the consumption of iron rich foods was low and spatially non-random in Ethiopia. Federal Ministry of Health and other stakeholders should give prior attention to the identified hot spot areas to enhance the consumption of iron rich foods among children aged 6–23 months.