Cargando…
Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition
BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical pr...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545949/ https://www.ncbi.nlm.nih.gov/pubmed/33032653 http://dx.doi.org/10.1186/s13046-020-01723-7 |
_version_ | 1783592136348794880 |
---|---|
author | Iannelli, Federica Roca, Maria Serena Lombardi, Rita Ciardiello, Chiara Grumetti, Laura De Rienzo, Simona Moccia, Tania Vitagliano, Carlo Sorice, Angela Costantini, Susan Milone, Maria Rita Pucci, Biagio Leone, Alessandra Di Gennaro, Elena Mancini, Rita Ciliberto, Gennaro Bruzzese, Francesca Budillon, Alfredo |
author_facet | Iannelli, Federica Roca, Maria Serena Lombardi, Rita Ciardiello, Chiara Grumetti, Laura De Rienzo, Simona Moccia, Tania Vitagliano, Carlo Sorice, Angela Costantini, Susan Milone, Maria Rita Pucci, Biagio Leone, Alessandra Di Gennaro, Elena Mancini, Rita Ciliberto, Gennaro Bruzzese, Francesca Budillon, Alfredo |
author_sort | Iannelli, Federica |
collection | PubMed |
description | BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by (1)H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease. |
format | Online Article Text |
id | pubmed-7545949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-75459492020-10-13 Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition Iannelli, Federica Roca, Maria Serena Lombardi, Rita Ciardiello, Chiara Grumetti, Laura De Rienzo, Simona Moccia, Tania Vitagliano, Carlo Sorice, Angela Costantini, Susan Milone, Maria Rita Pucci, Biagio Leone, Alessandra Di Gennaro, Elena Mancini, Rita Ciliberto, Gennaro Bruzzese, Francesca Budillon, Alfredo J Exp Clin Cancer Res Research BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by (1)H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease. BioMed Central 2020-10-08 /pmc/articles/PMC7545949/ /pubmed/33032653 http://dx.doi.org/10.1186/s13046-020-01723-7 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Iannelli, Federica Roca, Maria Serena Lombardi, Rita Ciardiello, Chiara Grumetti, Laura De Rienzo, Simona Moccia, Tania Vitagliano, Carlo Sorice, Angela Costantini, Susan Milone, Maria Rita Pucci, Biagio Leone, Alessandra Di Gennaro, Elena Mancini, Rita Ciliberto, Gennaro Bruzzese, Francesca Budillon, Alfredo Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title | Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title_full | Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title_fullStr | Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title_full_unstemmed | Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title_short | Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition |
title_sort | synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting cscs compartment via yap inhibition |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545949/ https://www.ncbi.nlm.nih.gov/pubmed/33032653 http://dx.doi.org/10.1186/s13046-020-01723-7 |
work_keys_str_mv | AT iannellifederica synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT rocamariaserena synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT lombardirita synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT ciardiellochiara synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT grumettilaura synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT derienzosimona synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT mocciatania synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT vitaglianocarlo synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT soriceangela synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT costantinisusan synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT milonemariarita synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT puccibiagio synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT leonealessandra synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT digennaroelena synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT mancinirita synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT cilibertogennaro synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT bruzzesefrancesca synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition AT budillonalfredo synergisticantitumorinteractionofvalproicacidandsimvastatinsensitizesprostatecancertodocetaxelbytargetingcscscompartmentviayapinhibition |