Cargando…
Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines
Making binary decisions is a common data analytical task in scientific research and industrial applications. In data sciences, there are two related but distinct strategies: hypothesis testing and binary classification. In practice, how to choose between these two strategies can be unclear and rathe...
Autores principales: | Li, Jingyi Jessica, Tong, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546185/ https://www.ncbi.nlm.nih.gov/pubmed/33073257 http://dx.doi.org/10.1016/j.patter.2020.100115 |
Ejemplares similares
-
Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning
por: Alonso-Betanzos, Amparo, et al.
Publicado: (2015) -
Texture Classification by Texton: Statistical versus Binary
por: Guo, Zhenhua, et al.
Publicado: (2014) -
The quest for the reliability of machine learning models in binary classification on tabular data
por: Araujo Santos, Vitor Cirilo, et al.
Publicado: (2023) -
Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
por: Mieth, Bettina, et al.
Publicado: (2016) -
Likelihood contrasts: a machine learning algorithm for binary classification of longitudinal data
por: Klén, Riku, et al.
Publicado: (2020)