Cargando…
Comparing the accuracy of several network-based COVID-19 prediction algorithms
Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approac...
Autores principales: | Achterberg, Massimo A., Prasse, Bastian, Ma, Long, Trajanovski, Stojan, Kitsak, Maksim, Van Mieghem, Piet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546239/ https://www.ncbi.nlm.nih.gov/pubmed/33071402 http://dx.doi.org/10.1016/j.ijforecast.2020.10.001 |
Ejemplares similares
-
Network-inference-based prediction of the COVID-19 epidemic outbreak in the Chinese province Hubei
por: Prasse, Bastian, et al.
Publicado: (2020) -
Predicting network dynamics without requiring the knowledge of the interaction graph
por: Prasse, Bastian, et al.
Publicado: (2022) -
Topological properties and organizing principles of semantic networks
por: Budel, Gabriel, et al.
Publicado: (2023) -
Network-based prediction of COVID-19 epidemic spreading in Italy
por: Pizzuti, Clara, et al.
Publicado: (2020) -
Time-dependent solution of the NIMFA equations around the epidemic threshold
por: Prasse, Bastian, et al.
Publicado: (2020)