Cargando…

Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic...

Descripción completa

Detalles Bibliográficos
Autores principales: P. E. de Souza, Camila, Andronescu, Mirela, Masud, Tehmina, Kabeer, Farhia, Biele, Justina, Laks, Emma, Lai, Daniel, Ye, Patricia, Brimhall, Jazmine, Wang, Beixi, Su, Edmund, Hui, Tony, Cao, Qi, Wong, Marcus, Moksa, Michelle, Moore, Richard A., Hirst, Martin, Aparicio, Samuel, Shah, Sohrab P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546467/
https://www.ncbi.nlm.nih.gov/pubmed/32966276
http://dx.doi.org/10.1371/journal.pcbi.1008270
_version_ 1783592234073980928
author P. E. de Souza, Camila
Andronescu, Mirela
Masud, Tehmina
Kabeer, Farhia
Biele, Justina
Laks, Emma
Lai, Daniel
Ye, Patricia
Brimhall, Jazmine
Wang, Beixi
Su, Edmund
Hui, Tony
Cao, Qi
Wong, Marcus
Moksa, Michelle
Moore, Richard A.
Hirst, Martin
Aparicio, Samuel
Shah, Sohrab P.
author_facet P. E. de Souza, Camila
Andronescu, Mirela
Masud, Tehmina
Kabeer, Farhia
Biele, Justina
Laks, Emma
Lai, Daniel
Ye, Patricia
Brimhall, Jazmine
Wang, Beixi
Su, Edmund
Hui, Tony
Cao, Qi
Wong, Marcus
Moksa, Michelle
Moore, Richard A.
Hirst, Martin
Aparicio, Samuel
Shah, Sohrab P.
author_sort P. E. de Souza, Camila
collection PubMed
description We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.
format Online
Article
Text
id pubmed-7546467
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-75464672020-10-19 Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data P. E. de Souza, Camila Andronescu, Mirela Masud, Tehmina Kabeer, Farhia Biele, Justina Laks, Emma Lai, Daniel Ye, Patricia Brimhall, Jazmine Wang, Beixi Su, Edmund Hui, Tony Cao, Qi Wong, Marcus Moksa, Michelle Moore, Richard A. Hirst, Martin Aparicio, Samuel Shah, Sohrab P. PLoS Comput Biol Research Article We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal. Public Library of Science 2020-09-23 /pmc/articles/PMC7546467/ /pubmed/32966276 http://dx.doi.org/10.1371/journal.pcbi.1008270 Text en © 2020 P. E. de Souza et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
P. E. de Souza, Camila
Andronescu, Mirela
Masud, Tehmina
Kabeer, Farhia
Biele, Justina
Laks, Emma
Lai, Daniel
Ye, Patricia
Brimhall, Jazmine
Wang, Beixi
Su, Edmund
Hui, Tony
Cao, Qi
Wong, Marcus
Moksa, Michelle
Moore, Richard A.
Hirst, Martin
Aparicio, Samuel
Shah, Sohrab P.
Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title_full Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title_fullStr Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title_full_unstemmed Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title_short Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
title_sort epiclomal: probabilistic clustering of sparse single-cell dna methylation data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546467/
https://www.ncbi.nlm.nih.gov/pubmed/32966276
http://dx.doi.org/10.1371/journal.pcbi.1008270
work_keys_str_mv AT pedesouzacamila epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT andronescumirela epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT masudtehmina epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT kabeerfarhia epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT bielejustina epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT laksemma epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT laidaniel epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT yepatricia epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT brimhalljazmine epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT wangbeixi epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT suedmund epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT huitony epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT caoqi epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT wongmarcus epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT moksamichelle epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT moorericharda epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT hirstmartin epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT apariciosamuel epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata
AT shahsohrabp epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata