Cargando…
Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546467/ https://www.ncbi.nlm.nih.gov/pubmed/32966276 http://dx.doi.org/10.1371/journal.pcbi.1008270 |
_version_ | 1783592234073980928 |
---|---|
author | P. E. de Souza, Camila Andronescu, Mirela Masud, Tehmina Kabeer, Farhia Biele, Justina Laks, Emma Lai, Daniel Ye, Patricia Brimhall, Jazmine Wang, Beixi Su, Edmund Hui, Tony Cao, Qi Wong, Marcus Moksa, Michelle Moore, Richard A. Hirst, Martin Aparicio, Samuel Shah, Sohrab P. |
author_facet | P. E. de Souza, Camila Andronescu, Mirela Masud, Tehmina Kabeer, Farhia Biele, Justina Laks, Emma Lai, Daniel Ye, Patricia Brimhall, Jazmine Wang, Beixi Su, Edmund Hui, Tony Cao, Qi Wong, Marcus Moksa, Michelle Moore, Richard A. Hirst, Martin Aparicio, Samuel Shah, Sohrab P. |
author_sort | P. E. de Souza, Camila |
collection | PubMed |
description | We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal. |
format | Online Article Text |
id | pubmed-7546467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75464672020-10-19 Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data P. E. de Souza, Camila Andronescu, Mirela Masud, Tehmina Kabeer, Farhia Biele, Justina Laks, Emma Lai, Daniel Ye, Patricia Brimhall, Jazmine Wang, Beixi Su, Edmund Hui, Tony Cao, Qi Wong, Marcus Moksa, Michelle Moore, Richard A. Hirst, Martin Aparicio, Samuel Shah, Sohrab P. PLoS Comput Biol Research Article We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal. Public Library of Science 2020-09-23 /pmc/articles/PMC7546467/ /pubmed/32966276 http://dx.doi.org/10.1371/journal.pcbi.1008270 Text en © 2020 P. E. de Souza et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article P. E. de Souza, Camila Andronescu, Mirela Masud, Tehmina Kabeer, Farhia Biele, Justina Laks, Emma Lai, Daniel Ye, Patricia Brimhall, Jazmine Wang, Beixi Su, Edmund Hui, Tony Cao, Qi Wong, Marcus Moksa, Michelle Moore, Richard A. Hirst, Martin Aparicio, Samuel Shah, Sohrab P. Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title | Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title_full | Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title_fullStr | Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title_full_unstemmed | Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title_short | Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data |
title_sort | epiclomal: probabilistic clustering of sparse single-cell dna methylation data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546467/ https://www.ncbi.nlm.nih.gov/pubmed/32966276 http://dx.doi.org/10.1371/journal.pcbi.1008270 |
work_keys_str_mv | AT pedesouzacamila epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT andronescumirela epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT masudtehmina epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT kabeerfarhia epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT bielejustina epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT laksemma epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT laidaniel epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT yepatricia epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT brimhalljazmine epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT wangbeixi epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT suedmund epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT huitony epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT caoqi epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT wongmarcus epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT moksamichelle epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT moorericharda epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT hirstmartin epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT apariciosamuel epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata AT shahsohrabp epiclomalprobabilisticclusteringofsparsesinglecelldnamethylationdata |