Cargando…
Robustness Improvement of Visual Templates Matching Based on Frequency-Tuned Model in RatSLAM
This paper describes an improved brain-inspired simultaneous localization and mapping (RatSLAM) that extracts visual features from saliency maps using a frequency-tuned (FT) model. In the traditional RatSLAM algorithm, the visual template feature is organized as a one-dimensional vector whose values...
Autores principales: | Yu, Shumei, Wu, Junyi, Xu, Haidong, Sun, Rongchuan, Sun, Lining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546858/ https://www.ncbi.nlm.nih.gov/pubmed/33101002 http://dx.doi.org/10.3389/fnbot.2020.568091 |
Ejemplares similares
-
Bionic Path Planning Fusing Episodic Memory Based on RatSLAM
por: Yu, Shumei, et al.
Publicado: (2023) -
xRatSLAM: An Extensible RatSLAM Computational Framework
por: de Souza Muñoz, Mauro Enrique, et al.
Publicado: (2022) -
Correlated Skin Surface and Tumor Motion Modeling for Treatment Planning in Robotic Radiosurgery
por: Yu, Shumei, et al.
Publicado: (2020) -
A Robust Planar Marker-Based Visual SLAM
por: Wang, Zhoubo, et al.
Publicado: (2023) -
OL-SLAM: A Robust and Versatile System of Object Localization and SLAM
por: Chen, Chao, et al.
Publicado: (2023)