Cargando…
Nonlinear flag manifolds as coadjoint orbits
A nonlinear flag is a finite sequence of nested closed submanifolds. We study the geometry of Fréchet manifolds of nonlinear flags, in this way generalizing the nonlinear Grassmannians. As an application, we describe a class of coadjoint orbits of the group of Hamiltonian diffeomorphisms that consis...
Autores principales: | Haller, Stefan, Vizman, Cornelia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547001/ https://www.ncbi.nlm.nih.gov/pubmed/33088009 http://dx.doi.org/10.1007/s10455-020-09725-6 |
Ejemplares similares
-
Noise and Dissipation on Coadjoint Orbits
por: Arnaudon, Alexis, et al.
Publicado: (2017) -
Coadjoint Orbits and Representations of the Jacobi Group
por: Berndt, R
Publicado: (2003) -
Geometric actions and the Maurer-Cartan equation on coadjoint orbits of infinite-dimensional Lie groups
por: Kubo, R, et al.
Publicado: (1994) -
$U_{h}(\mathfrak{g}) invariant quantization of coadjoint orbits and vector bundles over them
por: Donin, J
Publicado: (2000) -
$U_{q}(sl(n))$-invariant quantization of symmetric coadjoint orbits via reflection equation algebra
por: Donin, J, et al.
Publicado: (2001)