Cargando…

Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images

Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Prince, Eric W., Whelan, Ros, Mirsky, David M., Stence, Nicholas, Staulcup, Susan, Klimo, Paul, Anderson, Richard C. E., Niazi, Toba N., Grant, Gerald, Souweidane, Mark, Johnston, James M., Jackson, Eric M., Limbrick, David D., Smith, Amy, Drapeau, Annie, Chern, Joshua J., Kilburn, Lindsay, Ginn, Kevin, Naftel, Robert, Dudley, Roy, Tyler-Kabara, Elizabeth, Jallo, George, Handler, Michael H., Jones, Kenneth, Donson, Andrew M., Foreman, Nicholas K., Hankinson, Todd C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547020/
https://www.ncbi.nlm.nih.gov/pubmed/33037266
http://dx.doi.org/10.1038/s41598-020-73278-8
_version_ 1783592344884346880
author Prince, Eric W.
Whelan, Ros
Mirsky, David M.
Stence, Nicholas
Staulcup, Susan
Klimo, Paul
Anderson, Richard C. E.
Niazi, Toba N.
Grant, Gerald
Souweidane, Mark
Johnston, James M.
Jackson, Eric M.
Limbrick, David D.
Smith, Amy
Drapeau, Annie
Chern, Joshua J.
Kilburn, Lindsay
Ginn, Kevin
Naftel, Robert
Dudley, Roy
Tyler-Kabara, Elizabeth
Jallo, George
Handler, Michael H.
Jones, Kenneth
Donson, Andrew M.
Foreman, Nicholas K.
Hankinson, Todd C.
author_facet Prince, Eric W.
Whelan, Ros
Mirsky, David M.
Stence, Nicholas
Staulcup, Susan
Klimo, Paul
Anderson, Richard C. E.
Niazi, Toba N.
Grant, Gerald
Souweidane, Mark
Johnston, James M.
Jackson, Eric M.
Limbrick, David D.
Smith, Amy
Drapeau, Annie
Chern, Joshua J.
Kilburn, Lindsay
Ginn, Kevin
Naftel, Robert
Dudley, Roy
Tyler-Kabara, Elizabeth
Jallo, George
Handler, Michael H.
Jones, Kenneth
Donson, Andrew M.
Foreman, Nicholas K.
Hankinson, Todd C.
author_sort Prince, Eric W.
collection PubMed
description Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases.
format Online
Article
Text
id pubmed-7547020
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75470202020-10-14 Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images Prince, Eric W. Whelan, Ros Mirsky, David M. Stence, Nicholas Staulcup, Susan Klimo, Paul Anderson, Richard C. E. Niazi, Toba N. Grant, Gerald Souweidane, Mark Johnston, James M. Jackson, Eric M. Limbrick, David D. Smith, Amy Drapeau, Annie Chern, Joshua J. Kilburn, Lindsay Ginn, Kevin Naftel, Robert Dudley, Roy Tyler-Kabara, Elizabeth Jallo, George Handler, Michael H. Jones, Kenneth Donson, Andrew M. Foreman, Nicholas K. Hankinson, Todd C. Sci Rep Article Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases. Nature Publishing Group UK 2020-10-09 /pmc/articles/PMC7547020/ /pubmed/33037266 http://dx.doi.org/10.1038/s41598-020-73278-8 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Prince, Eric W.
Whelan, Ros
Mirsky, David M.
Stence, Nicholas
Staulcup, Susan
Klimo, Paul
Anderson, Richard C. E.
Niazi, Toba N.
Grant, Gerald
Souweidane, Mark
Johnston, James M.
Jackson, Eric M.
Limbrick, David D.
Smith, Amy
Drapeau, Annie
Chern, Joshua J.
Kilburn, Lindsay
Ginn, Kevin
Naftel, Robert
Dudley, Roy
Tyler-Kabara, Elizabeth
Jallo, George
Handler, Michael H.
Jones, Kenneth
Donson, Andrew M.
Foreman, Nicholas K.
Hankinson, Todd C.
Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_full Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_fullStr Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_full_unstemmed Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_short Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_sort robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547020/
https://www.ncbi.nlm.nih.gov/pubmed/33037266
http://dx.doi.org/10.1038/s41598-020-73278-8
work_keys_str_mv AT princeericw robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT whelanros robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT mirskydavidm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT stencenicholas robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT staulcupsusan robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT klimopaul robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT andersonrichardce robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT niazitoban robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT grantgerald robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT souweidanemark robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT johnstonjamesm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT jacksonericm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT limbrickdavidd robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT smithamy robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT drapeauannie robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT chernjoshuaj robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT kilburnlindsay robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT ginnkevin robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT naftelrobert robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT dudleyroy robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT tylerkabaraelizabeth robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT jallogeorge robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT handlermichaelh robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT joneskenneth robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT donsonandrewm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT foremannicholask robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT hankinsontoddc robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages