Cargando…
Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potential...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547020/ https://www.ncbi.nlm.nih.gov/pubmed/33037266 http://dx.doi.org/10.1038/s41598-020-73278-8 |
_version_ | 1783592344884346880 |
---|---|
author | Prince, Eric W. Whelan, Ros Mirsky, David M. Stence, Nicholas Staulcup, Susan Klimo, Paul Anderson, Richard C. E. Niazi, Toba N. Grant, Gerald Souweidane, Mark Johnston, James M. Jackson, Eric M. Limbrick, David D. Smith, Amy Drapeau, Annie Chern, Joshua J. Kilburn, Lindsay Ginn, Kevin Naftel, Robert Dudley, Roy Tyler-Kabara, Elizabeth Jallo, George Handler, Michael H. Jones, Kenneth Donson, Andrew M. Foreman, Nicholas K. Hankinson, Todd C. |
author_facet | Prince, Eric W. Whelan, Ros Mirsky, David M. Stence, Nicholas Staulcup, Susan Klimo, Paul Anderson, Richard C. E. Niazi, Toba N. Grant, Gerald Souweidane, Mark Johnston, James M. Jackson, Eric M. Limbrick, David D. Smith, Amy Drapeau, Annie Chern, Joshua J. Kilburn, Lindsay Ginn, Kevin Naftel, Robert Dudley, Roy Tyler-Kabara, Elizabeth Jallo, George Handler, Michael H. Jones, Kenneth Donson, Andrew M. Foreman, Nicholas K. Hankinson, Todd C. |
author_sort | Prince, Eric W. |
collection | PubMed |
description | Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases. |
format | Online Article Text |
id | pubmed-7547020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75470202020-10-14 Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images Prince, Eric W. Whelan, Ros Mirsky, David M. Stence, Nicholas Staulcup, Susan Klimo, Paul Anderson, Richard C. E. Niazi, Toba N. Grant, Gerald Souweidane, Mark Johnston, James M. Jackson, Eric M. Limbrick, David D. Smith, Amy Drapeau, Annie Chern, Joshua J. Kilburn, Lindsay Ginn, Kevin Naftel, Robert Dudley, Roy Tyler-Kabara, Elizabeth Jallo, George Handler, Michael H. Jones, Kenneth Donson, Andrew M. Foreman, Nicholas K. Hankinson, Todd C. Sci Rep Article Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases. Nature Publishing Group UK 2020-10-09 /pmc/articles/PMC7547020/ /pubmed/33037266 http://dx.doi.org/10.1038/s41598-020-73278-8 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Prince, Eric W. Whelan, Ros Mirsky, David M. Stence, Nicholas Staulcup, Susan Klimo, Paul Anderson, Richard C. E. Niazi, Toba N. Grant, Gerald Souweidane, Mark Johnston, James M. Jackson, Eric M. Limbrick, David D. Smith, Amy Drapeau, Annie Chern, Joshua J. Kilburn, Lindsay Ginn, Kevin Naftel, Robert Dudley, Roy Tyler-Kabara, Elizabeth Jallo, George Handler, Michael H. Jones, Kenneth Donson, Andrew M. Foreman, Nicholas K. Hankinson, Todd C. Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title | Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title_full | Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title_fullStr | Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title_full_unstemmed | Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title_short | Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
title_sort | robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547020/ https://www.ncbi.nlm.nih.gov/pubmed/33037266 http://dx.doi.org/10.1038/s41598-020-73278-8 |
work_keys_str_mv | AT princeericw robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT whelanros robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT mirskydavidm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT stencenicholas robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT staulcupsusan robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT klimopaul robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT andersonrichardce robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT niazitoban robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT grantgerald robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT souweidanemark robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT johnstonjamesm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT jacksonericm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT limbrickdavidd robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT smithamy robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT drapeauannie robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT chernjoshuaj robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT kilburnlindsay robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT ginnkevin robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT naftelrobert robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT dudleyroy robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT tylerkabaraelizabeth robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT jallogeorge robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT handlermichaelh robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT joneskenneth robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT donsonandrewm robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT foremannicholask robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages AT hankinsontoddc robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages |