Cargando…
Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
The ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velocity traj...
Autores principales: | Krasoulis, Agamemnon, Nazarpour, Kianoush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547112/ https://www.ncbi.nlm.nih.gov/pubmed/33037253 http://dx.doi.org/10.1038/s41598-020-72574-7 |
Ejemplares similares
-
Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder
por: Krasoulis, Agamemnon, et al.
Publicado: (2019) -
Recalibration of myoelectric control with active learning
por: Szymaniak, Katarzyna, et al.
Publicado: (2022) -
Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements
por: Krasoulis, Agamemnon, et al.
Publicado: (2017) -
Abstract and Proportional Myoelectric Control for Multi-Fingered Hand Prostheses
por: Pistohl, Tobias, et al.
Publicado: (2013) -
Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements
por: Abbaspour, Sara, et al.
Publicado: (2021)