Cargando…
Learning probabilistic neural representations with randomly connected circuits
The brain represents and reasons probabilistically about complex stimuli and motor actions using a noisy, spike-based neural code. A key building block for such neural computations, as well as the basis for supervised and unsupervised learning, is the ability to estimate the surprise or likelihood o...
Autores principales: | Maoz, Ori, Tkačik, Gašper, Esteki, Mohamad Saleh, Kiani, Roozbeh, Schneidman, Elad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547210/ https://www.ncbi.nlm.nih.gov/pubmed/32948691 http://dx.doi.org/10.1073/pnas.1912804117 |
Ejemplares similares
-
Probabilistic models of individual and collective animal behavior
por: Bod’ová, Katarína, et al.
Publicado: (2018) -
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
por: Granot-Atedgi, Einat, et al.
Publicado: (2013) -
Probabilistic models for neural populations that naturally capture global coupling and criticality
por: Humplik, Jan, et al.
Publicado: (2017) -
Adaptation to Changes in Higher-Order Stimulus Statistics in the Salamander Retina
por: Tkačik, Gašper, et al.
Publicado: (2014) -
Searching for Collective Behavior in a Large Network of Sensory Neurons
por: Tkačik, Gašper, et al.
Publicado: (2014)