Cargando…
Using Item Response Theory for Explainable Machine Learning in Predicting Mortality in the Intensive Care Unit: Case-Based Approach
BACKGROUND: Supervised machine learning (ML) is being featured in the health care literature with study results frequently reported using metrics such as accuracy, sensitivity, specificity, recall, or F1 score. Although each metric provides a different perspective on the performance, they remain to...
Autores principales: | Kline, Adrienne, Kline, Theresa, Shakeri Hossein Abad, Zahra, Lee, Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547395/ https://www.ncbi.nlm.nih.gov/pubmed/32975523 http://dx.doi.org/10.2196/20268 |
Ejemplares similares
-
Digital public health surveillance: a systematic scoping review
por: Shakeri Hossein Abad, Zahra, et al.
Publicado: (2021) -
Crowdsourcing for Machine Learning in Public Health Surveillance: Lessons Learned From Amazon Mechanical Turk
por: Shakeri Hossein Abad, Zahra, et al.
Publicado: (2022) -
Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission
por: Hu, Chang, et al.
Publicado: (2022) -
Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems
por: González-Nóvoa, José A., et al.
Publicado: (2021) -
Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning
por: González-Nóvoa, José A., et al.
Publicado: (2023)