Cargando…
The adaptive immune receptor repertoire community as a model for FAIR stewardship of big immunology data
Systems biology involves network-oriented, computational approaches to modeling biological systems through analysis of big biological data. To contribute maximally to scientific progress, big biological data should be FAIR: findable, accessible, interoperable, and reusable. Here, we describe high-th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547575/ https://www.ncbi.nlm.nih.gov/pubmed/33073065 http://dx.doi.org/10.1016/j.coisb.2020.10.001 |
Sumario: | Systems biology involves network-oriented, computational approaches to modeling biological systems through analysis of big biological data. To contribute maximally to scientific progress, big biological data should be FAIR: findable, accessible, interoperable, and reusable. Here, we describe high-throughput sequencing data that characterize the vast diversity of B- and T-cell clones comprising the adaptive immune receptor repertoire (AIRR-seq data) and its contribution to our understanding of COVID-19 (coronavirus disease 19). We describe the accomplishments of the AIRR community, a grass-roots network of interdisciplinary laboratory scientists, bioinformaticians, and policy wonks, in creating and publishing standards, software and repositories for AIRR-seq data based on the FAIR principles. |
---|