Cargando…

Thermal runaway of Lithium-ion batteries employing LiN(SO(2)F)(2)-based concentrated electrolytes

Concentrated electrolytes usually demonstrate good electrochemical performance and thermal stability, and are also supposed to be promising when it comes to improving the safety of lithium-ion batteries due to their low flammability. Here, we show that LiN(SO(2)F)(2)-based concentrated electrolytes...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Junxian, Lu, Languang, Wang, Li, Ohma, Atsushi, Ren, Dongsheng, Feng, Xuning, Li, Yan, Li, Yalun, Ootani, Issei, Han, Xuebing, Ren, Weining, He, Xiangming, Nitta, Yoshiaki, Ouyang, Minggao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547674/
https://www.ncbi.nlm.nih.gov/pubmed/33037217
http://dx.doi.org/10.1038/s41467-020-18868-w
Descripción
Sumario:Concentrated electrolytes usually demonstrate good electrochemical performance and thermal stability, and are also supposed to be promising when it comes to improving the safety of lithium-ion batteries due to their low flammability. Here, we show that LiN(SO(2)F)(2)-based concentrated electrolytes are incapable of solving the safety issues of lithium-ion batteries. To illustrate, a mechanism based on battery material and characterizations reveals that the tremendous heat in lithium-ion batteries is released due to the reaction between the lithiated graphite and LiN(SO(2)F)(2) triggered thermal runaway of batteries, even if the concentrated electrolyte is non-flammable or low-flammable. Generally, the flammability of an electrolyte represents its behaviors when oxidized by oxygen, while it is the electrolyte reduction that triggers the chain of exothermic reactions in a battery. Thus, this study lights the way to a deeper understanding of the thermal runaway mechanism in batteries as well as the design philosophy of electrolytes for safer lithium-ion batteries.