Cargando…
Learning molecular dynamics with simple language model built upon long short-term memory neural network
Recurrent neural networks have led to breakthroughs in natural language processing and speech recognition. Here we show that recurrent networks, specifically long short-term memory networks can also capture the temporal evolution of chemical/biophysical trajectories. Our character-level language mod...
Autores principales: | Tsai, Sun-Ting, Kuo, En-Jui, Tiwary, Pratyush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547727/ https://www.ncbi.nlm.nih.gov/pubmed/33037228 http://dx.doi.org/10.1038/s41467-020-18959-8 |
Ejemplares similares
-
Path sampling of recurrent neural networks by incorporating known physics
por: Tsai, Sun-Ting, et al.
Publicado: (2022) -
Human Posture Transition-Time Detection Based upon Inertial Measurement Unit and Long Short-Term Memory Neural Networks
por: Kuo, Chun-Ting, et al.
Publicado: (2023) -
Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
por: Zazo, Ruben, et al.
Publicado: (2016) -
Predictions built upon belongings
por: Grisoni, Luigi
Publicado: (2022) -
Language repetition and short-term memory: an integrative framework
por: Majerus, Steve
Publicado: (2013)