Cargando…

Proteome analysis of Saccharomyces cerevisiae after methyl methane sulfonate (MMS) treatment

The treatment of methyl methane sulfonate (MMS) increases sensitivity to the DNA damage which, further leads to the cell death followed by a cell cycle delay. Delay in the cell cycle is because of the change in global transcription regulation which results into proteome change. There are several mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Bharati, Akhilendra Pratap, Kumari, Sunita, Akhtar, Md Sohail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7548944/
https://www.ncbi.nlm.nih.gov/pubmed/33072891
http://dx.doi.org/10.1016/j.bbrep.2020.100820
Descripción
Sumario:The treatment of methyl methane sulfonate (MMS) increases sensitivity to the DNA damage which, further leads to the cell death followed by a cell cycle delay. Delay in the cell cycle is because of the change in global transcription regulation which results into proteome change. There are several microarray studies on the transcriptome changes after MMS treatment, but very few studies are reported related to proteome change. The proteome analysis in this report identified subgroups of proteins, belonging to known cell cycle regulators, metabolic pathways and protein folding. About 53 proteins were identified by MS/MS and found that 36 of them were induced, 10 were repressed and few of them showed insignificant change. Our results indicated the change in the interactome as well as phosphorylation status of carboxy terminal domain (CTD) of RNA Polymerase II (RNAP-II) after MMS treatment. The RNAP-II complex was affinity purified and ~1640 peptides were identified using nano LC/MS corresponding to 27 interacting proteins along with the twelve RNAP-II subunit. These identified proteins participated in the repair of the damage, changes the function of the main energetic pathways and the carbon flux in various end products. The main metabolic enzymes in the glycolysis, pyruvate phosphate and amino acid biosynthesis pathways showed significant change. Our results indicate that DNA damage is somehow related to these pathways and is co-regulated simultaneously.