Cargando…
Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19
BACKGROUND: The coronavirus disease 2019 (COVID-19) has brought a global disaster. Quantitative lesions may provide the radiological evidence of the severity of pneumonia and further to assess the effect of comorbidity on patients with COVID-19. METHODS: 294 patients with COVID-19 were enrolled from...
Autores principales: | Zhang, Cui, Yang, Guangzhao, Cai, Chunxian, Xu, Zhihua, Wu, Hai, Guo, Youmin, Xie, Zongyu, Shi, Hengfeng, Cheng, Guohua, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549080/ https://www.ncbi.nlm.nih.gov/pubmed/33046116 http://dx.doi.org/10.1186/s40001-020-00450-1 |
Ejemplares similares
-
CT-based radiomic nomogram for predicting the severity of patients with COVID-19
por: Shi, Hengfeng, et al.
Publicado: (2022) -
Clinical and CT findings of COVID-19: differences among three age groups
por: Wang, Jian, et al.
Publicado: (2020) -
A combined encoder–transformer–decoder network for volumetric segmentation of adrenal tumors
por: Wang, Liping, et al.
Publicado: (2023) -
Potential Value of Expiratory CT in Quantitative Assessment of Pulmonary Vessels in COPD
por: Cao, Xianxian, et al.
Publicado: (2021) -
Lung involvement in patients with coronavirus disease-19 (COVID-19): a retrospective study based on quantitative CT findings
por: Yu, Nan, et al.
Publicado: (2020)