Cargando…
Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term
In multiple regression Y ~ β(0) + β(1)X(1) + β(2)X(2) + β(3)X(1) X(2) + ɛ., the interaction term is quantified as the product of X(1) and X(2). We developed fractional-power interaction regression (FPIR), using βX(1)(M) X(2)(N) as the interaction term. The rationale of FPIR is that the slopes of Y-X...
Autores principales: | Li, Xinhai, Li, Baidu, Wang, Guiming, Zhan, Xiangjiang, Holyoak, Marcel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549115/ https://www.ncbi.nlm.nih.gov/pubmed/33072528 http://dx.doi.org/10.1016/j.mex.2020.101067 |
Ejemplares similares
-
LinearCoFold and LinearCoPartition: linear-time algorithms for secondary structure prediction of interacting RNA molecules
por: Zhang, He, et al.
Publicado: (2023) -
Simple and nonradioactive detection of microRNAs using digoxigenin (DIG)-labeled probes with high sensitivity
por: Wu, Wei, et al.
Publicado: (2014) -
DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA
por: Kim, Daesik, et al.
Publicado: (2018) -
Tejaas: reverse regression increases power for detecting trans-eQTLs
por: Banerjee, Saikat, et al.
Publicado: (2021) -
GTB-PPI: Predict Protein–protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting
por: Yu, Bin, et al.
Publicado: (2020)