Cargando…

An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes

BACKGROUND: Belonging to lineage I of Brassicaceae, Camelina sativa is formed by two hybridizations of three species (three sub-genomes). The three sub-genomes were diverged from a common ancestor, likely derived from lineage I (Ancestral Crucifer karyotype, ACK). The karyotype evolutionary trajecto...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhikang, Meng, Fanbo, Sun, Pengchuan, Yuan, Jiaqing, Gong, Ke, Liu, Chao, Wang, Weijie, Wang, Xiyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549213/
https://www.ncbi.nlm.nih.gov/pubmed/33045990
http://dx.doi.org/10.1186/s12864-020-07081-0
_version_ 1783592758798188544
author Zhang, Zhikang
Meng, Fanbo
Sun, Pengchuan
Yuan, Jiaqing
Gong, Ke
Liu, Chao
Wang, Weijie
Wang, Xiyin
author_facet Zhang, Zhikang
Meng, Fanbo
Sun, Pengchuan
Yuan, Jiaqing
Gong, Ke
Liu, Chao
Wang, Weijie
Wang, Xiyin
author_sort Zhang, Zhikang
collection PubMed
description BACKGROUND: Belonging to lineage I of Brassicaceae, Camelina sativa is formed by two hybridizations of three species (three sub-genomes). The three sub-genomes were diverged from a common ancestor, likely derived from lineage I (Ancestral Crucifer karyotype, ACK). The karyotype evolutionary trajectories of the C. sativa chromosomes are currently unknown. Here, we managed to adopt a telomere-centric theory proposed previously to explain the karyotype evolution in C. sativa. RESULTS: By characterizing the homology between A. lyrata and C. sativa chromosomes, we inferred ancestral diploid karyotype of C. sativa (ADK), including 7 ancestral chromosomes, and reconstructed the evolutionary trajectories leading to the formation of extant C. sativa genome. The process involved 2 chromosome fusions. We found that sub-genomes Cs-G1 and Cs-G2 may share a closer common ancestor than Cs-G3. Together with other lines of evidence from Arabidopsis, we propose that the Brassicaceae plants, even the eudicots, follow a chromosome fusion mechanism favoring end-end joining of different chromosomes, rather than a mechanism favoring the formation circular chromosomes and nested chromosome fusion preferred by the monocots. CONCLUSIONS: The present work will contribute to understanding the formation of C. sativa chromosomes, providing insight into Brassicaceae karyotype evolution.
format Online
Article
Text
id pubmed-7549213
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-75492132020-10-13 An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes Zhang, Zhikang Meng, Fanbo Sun, Pengchuan Yuan, Jiaqing Gong, Ke Liu, Chao Wang, Weijie Wang, Xiyin BMC Genomics Research Article BACKGROUND: Belonging to lineage I of Brassicaceae, Camelina sativa is formed by two hybridizations of three species (three sub-genomes). The three sub-genomes were diverged from a common ancestor, likely derived from lineage I (Ancestral Crucifer karyotype, ACK). The karyotype evolutionary trajectories of the C. sativa chromosomes are currently unknown. Here, we managed to adopt a telomere-centric theory proposed previously to explain the karyotype evolution in C. sativa. RESULTS: By characterizing the homology between A. lyrata and C. sativa chromosomes, we inferred ancestral diploid karyotype of C. sativa (ADK), including 7 ancestral chromosomes, and reconstructed the evolutionary trajectories leading to the formation of extant C. sativa genome. The process involved 2 chromosome fusions. We found that sub-genomes Cs-G1 and Cs-G2 may share a closer common ancestor than Cs-G3. Together with other lines of evidence from Arabidopsis, we propose that the Brassicaceae plants, even the eudicots, follow a chromosome fusion mechanism favoring end-end joining of different chromosomes, rather than a mechanism favoring the formation circular chromosomes and nested chromosome fusion preferred by the monocots. CONCLUSIONS: The present work will contribute to understanding the formation of C. sativa chromosomes, providing insight into Brassicaceae karyotype evolution. BioMed Central 2020-10-12 /pmc/articles/PMC7549213/ /pubmed/33045990 http://dx.doi.org/10.1186/s12864-020-07081-0 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Zhang, Zhikang
Meng, Fanbo
Sun, Pengchuan
Yuan, Jiaqing
Gong, Ke
Liu, Chao
Wang, Weijie
Wang, Xiyin
An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title_full An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title_fullStr An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title_full_unstemmed An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title_short An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes
title_sort updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form camelina sativa chromosomes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549213/
https://www.ncbi.nlm.nih.gov/pubmed/33045990
http://dx.doi.org/10.1186/s12864-020-07081-0
work_keys_str_mv AT zhangzhikang anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT mengfanbo anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT sunpengchuan anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT yuanjiaqing anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT gongke anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT liuchao anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT wangweijie anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT wangxiyin anupdatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT zhangzhikang updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT mengfanbo updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT sunpengchuan updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT yuanjiaqing updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT gongke updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT liuchao updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT wangweijie updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes
AT wangxiyin updatedexplanationofancestralkaryotypechangesandreconstructionofevolutionarytrajectoriestoformcamelinasativachromosomes