Cargando…

Lower Dietary and Circulating Vitamin C in Middle- and Older-Aged Men and Women Are Associated with Lower Estimated Skeletal Muscle Mass

BACKGROUND: Age-related loss of skeletal muscle mass contributes to poor outcomes including sarcopenia, physical disability, frailty, type 2 diabetes, and mortality. Vitamin C has physiological relevance to skeletal muscle and may protect it during aging, but few studies have investigated its import...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Lucy N, Hayhoe, Richard P G, Mulligan, Angela A, Luben, Robert N, Khaw, Kay-Tee, Welch, Ailsa A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549302/
https://www.ncbi.nlm.nih.gov/pubmed/32851397
http://dx.doi.org/10.1093/jn/nxaa221
Descripción
Sumario:BACKGROUND: Age-related loss of skeletal muscle mass contributes to poor outcomes including sarcopenia, physical disability, frailty, type 2 diabetes, and mortality. Vitamin C has physiological relevance to skeletal muscle and may protect it during aging, but few studies have investigated its importance in older populations. OBJECTIVES: We aimed to investigate cross-sectional associations of dietary and plasma vitamin C with proxy measures of skeletal muscle mass in a large cohort of middle- and older-aged individuals. METHODS: We analyzed data from >13,000 men and women in the European Prospective Investigation into Cancer and Nutrition–Norfolk cohort, aged 42–82 y. Fat-free mass (FFM), as a proxy for skeletal muscle mass, was estimated using bioelectrical impedance analysis and expressed as a percentage of total mass (FFM%) or standardized by BMI (FFM(BMI)). Dietary vitamin C intakes were calculated from 7-d food diary data, and plasma vitamin C was measured in peripheral blood. Multivariable regression models, including relevant lifestyle, dietary, and biological covariates, were used to determine associations between FFM measures and quintiles of dietary vitamin C or insufficient compared with sufficient plasma vitamin C (<50 μmol/L and ≥50 μmol/L). RESULTS: Positive trends were found across quintiles of dietary vitamin C and FFM measures for both sexes, with interquintile differences in FFM% and FFM(BMI) of 1.0% and 2.3% for men and 1.9% and 2.9% for women, respectively (all P < 0.001). Similarly, FFM% and FFM(BMI) measures were higher in participants with sufficient than with insufficient plasma vitamin C: by 1.6% and 2.0% in men, and 3.4% and 3.9% in women, respectively (all P < 0.001). Associations were also evident in analyses stratified into <65-y and ≥65-y age groups. CONCLUSIONS: Our findings of positive associations, of both dietary and circulating vitamin C with measures of skeletal muscle mass in middle- and older-aged men and women, suggest that dietary vitamin C intake may be useful for reducing age-related muscle loss.