Cargando…
Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data
BACKGROUND: In the interrupted time series (ITS) approach, it is common to average the outcome of interest at each time point and then perform a segmented regression (SR) analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when data are missing at random (MAR) and p...
Autores principales: | Bazo-Alvarez, Juan Carlos, Morris, Tim P, Pham, Tra My, Carpenter, James R, Petersen, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549500/ https://www.ncbi.nlm.nih.gov/pubmed/33116899 http://dx.doi.org/10.2147/CLEP.S266428 |
Ejemplares similares
-
Current Practices in Missing Data Handling for Interrupted Time Series Studies Performed on Individual-Level Data: A Scoping Review in Health Research
por: Bazo-Alvarez, Juan Carlos, et al.
Publicado: (2021) -
Weighted multiple imputation of ethnicity data that are missing not at random in primary care databases
por: Pham, Tra My, et al.
Publicado: (2017) -
Health indicator recording in UK primary care electronic health records: key implications for handling missing data
por: Petersen, Irene, et al.
Publicado: (2019) -
Methods to handle missing values and missing individuals
por: Bonander, Carl, et al.
Publicado: (2018) -
Ethnic Differences in the Prevalence of Type 2 Diabetes Diagnoses in the UK: Cross-Sectional Analysis of the Health Improvement Network Primary Care Database
por: Pham, Tra My, et al.
Publicado: (2019)