Cargando…

Maltose promotes crucian carp survival against Aeromonas sobrial infection at high temperature

Temperature influences fish’s susceptibility to infectious disease through an immune response. However, the mechanism underlying this regulation is yet to be elucidated. In this study, we compared the susceptibility of crucian carp that were grown at 18°C and 33°C, respectively, to Aeromonas sobrial...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Ming, Yang, Li-Fen, Zheng, Jun, Chen, Zhuang-Gui, Peng, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549911/
https://www.ncbi.nlm.nih.gov/pubmed/32698656
http://dx.doi.org/10.1080/21505594.2020.1787604
Descripción
Sumario:Temperature influences fish’s susceptibility to infectious disease through an immune response. However, the mechanism underlying this regulation is yet to be elucidated. In this study, we compared the susceptibility of crucian carp that were grown at 18°C and 33°C, respectively, to Aeromonas sobrial infection and found that crucian carp was more susceptible when grown at 33°C. These distinct susceptibilities of fish at different temperatures to infection may partially be explained by their differences in the metabolism as revealed by comparative metabolomics profiling: crucian carp demonstrated enhanced TCA cycle but reduced fatty acid biosynthesis; Our study also found that maltose was the most suppressed metabolite in fish grown at 33°C. Importantly, exogenous injection of maltose enhances crucian carp survival grown at 33°C by 30%. Further study showed that exogenous maltose downregulated the production of several cytokines but enhanced the lysozyme (lyz) and complement component c3, which involves the humoral innate immunity. Our results suggest that maltose promotes the survival of crucian carp likely through fine tuning the immune gene expression, and this finding provides a novel approach to manage bacterial infection.