Cargando…
Deep learning in next-generation sequencing
Next-generation sequencing (NGS) methods lie at the heart of large parts of biological and medical research. Their fundamental importance has created a continuously increasing demand for processing and analysis methods of the data sets produced, addressing questions such as variant calling, metageno...
Autores principales: | Schmidt, Bertil, Hildebrandt, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550123/ https://www.ncbi.nlm.nih.gov/pubmed/33059075 http://dx.doi.org/10.1016/j.drudis.2020.10.002 |
Ejemplares similares
-
A review of deep learning applications in human genomics using next-generation sequencing data
por: Alharbi, Wardah S., et al.
Publicado: (2022) -
Next generation deep sequencing and vaccine design: today and tomorrow
por: Luciani, Fabio, et al.
Publicado: (2012) -
MetaTransformer: deep metagenomic sequencing read classification using self-attention models
por: Wichmann, Alexander, et al.
Publicado: (2023) -
A deep learning model for predicting next-generation sequencing depth from DNA sequence
por: Zhang, Jinny X., et al.
Publicado: (2021) -
Editorial: Deep learning for disease prediction in next-generation sequencing and biomedical imaging data
por: Mallik, Saurav, et al.
Publicado: (2023)