Cargando…
Unsupervised learning for large-scale corneal topography clustering
Machine learning algorithms have recently shown their precision and potential in many different use cases and fields of medicine. Most of the algorithms used are supervised and need a large quantity of labeled data to achieve high accuracy. Also, most applications of machine learning in medicine are...
Autores principales: | Zéboulon, Pierre, Debellemanière, Guillaume, Gatinel, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550569/ https://www.ncbi.nlm.nih.gov/pubmed/33046810 http://dx.doi.org/10.1038/s41598-020-73902-7 |
Ejemplares similares
-
Deep Learning Model for the Detection of Corneal Edema Before Descemet Membrane Endothelial Keratoplasty on Optical Coherence Tomography Images
por: Bitton, Karen, et al.
Publicado: (2022) -
Theoretical Relationship Among Effective Lens Position, Predicted Refraction, and Corneal and Intraocular Lens Power in a Pseudophakic Eye Model
por: Gatinel, Damien, et al.
Publicado: (2022) -
Quantitative interocular comparison of total corneal surface area and corneal diameter in patients with highly asymmetric keratoconus
por: Crahay, François-Xavier, et al.
Publicado: (2022) -
Conjunctival limbal autografting (CLAU) combined with customised simple limbal epithelial transplantation (SLET) in a severe corneal chemical burn: Case report
por: Panthier, Christophe, et al.
Publicado: (2020) -
Quantitative comparison of corneal surface areas in keratoconus and normal eyes
por: Crahay, François-Xavier, et al.
Publicado: (2021)