Cargando…
Neural Dynamics of the Combined Discounting of Delay and Probability During the Evaluation of a Delayed Risky Reward
Delay discounting and probability discounting are two important processes, but in daily life there are many more situations that involve delayed risky outcomes. Although neuroscience research has extensively investigated delay and probability discounting in isolation, little research has explored th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550637/ https://www.ncbi.nlm.nih.gov/pubmed/33132984 http://dx.doi.org/10.3389/fpsyg.2020.576460 |
Sumario: | Delay discounting and probability discounting are two important processes, but in daily life there are many more situations that involve delayed risky outcomes. Although neuroscience research has extensively investigated delay and probability discounting in isolation, little research has explored the neural correlates of the combined discounting of delay and probability. Using the event-related brain potentials (ERPs) technique, we designed a novel paradigm to investigate neural processes related to the combined discounting of delay and probability during the evaluation of a delayed risky reward. ERP results suggested distinct temporal dynamics for delay and probability processing during combined discounting. Both the early frontal P200 and the N2 reflected only probability, not delay, while the parietal P300 was sensitive to both probability and delay. Furthermore, the late positive potential (LPP) was sensitive to probability, but insensitive to delay. These results suggest that probability has a prolonged modulatory effect on reward evaluation in the information processing stream. These findings contribute to an understanding of the neural processes underlying the combined discounting of delay and probability. The limitation of this study is to only consider four delay and probability combinations. Future studies can explore the combined discounting of more probability and delay combinations to further test the robustness of the conclusion. |
---|