Cargando…
Auto-Weighted Multi-View Discriminative Metric Learning Method With Fisher Discriminative and Global Structure Constraints for Epilepsy EEG Signal Classification
Metric learning is a class of efficient algorithms for EEG signal classification problem. Usually, metric learning method deals with EEG signals in the single view space. To exploit the diversity and complementariness of different feature representations, a new auto-weighted multi-view discriminativ...
Autores principales: | Xue, Jing, Gu, Xiaoqing, Ni, Tongguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550683/ https://www.ncbi.nlm.nih.gov/pubmed/33132835 http://dx.doi.org/10.3389/fnins.2020.586149 |
Ejemplares similares
-
Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition
por: Gu, Xiaoqing, et al.
Publicado: (2021) -
Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classification
por: Ruan, Yang, et al.
Publicado: (2022) -
Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
por: Suhail, Zobia, et al.
Publicado: (2018) -
Fisher Discrimination Regularized Robust Coding Based on a Local Center for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2018) -
Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
por: Zhou, Guohua, et al.
Publicado: (2022)