Cargando…
A Custom EOG-Based HMI Using Neural Network Modeling to Real-Time for the Trajectory Tracking of a Manipulator Robot
Although different physiological signals, such as electrooculography (EOG) have been widely used in the control of assistance systems for people with disabilities, customizing the signal classification system remains a challenge. In most interfaces, the user must adapt to the classification paramete...
Autores principales: | Perez Reynoso, Francisco D., Niño Suarez, Paola A., Aviles Sanchez, Oscar F., Calva Yañez, María B., Vega Alvarado, Eduardo, Portilla Flores, Edgar A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550784/ https://www.ncbi.nlm.nih.gov/pubmed/33117141 http://dx.doi.org/10.3389/fnbot.2020.578834 |
Ejemplares similares
-
Affine Transform to Reform Pixel Coordinates of EOG Signals for Controlling Robot Manipulators Using Gaze Motions
por: Rusydi, Muhammad Ilhamdi, et al.
Publicado: (2014) -
People and the HMI of the Future
por: Kellermann, Timm, et al.
Publicado: (2020) -
Human–Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot
por: Pérez-Reynoso, Francisco David, et al.
Publicado: (2021) -
A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control
por: Zhu, Yuanlu, et al.
Publicado: (2020) -
A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques
por: Klados, Manousos A., et al.
Publicado: (2016)