Cargando…
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
Background and Purpose: Automatic segmentation model is proven to be efficient in delineation of organs at risk (OARs) in radiotherapy; its performance is usually evaluated with geometric differences between automatic and manual delineations. However, dosimetric differences attract more interests th...
Autores principales: | Zhu, Ji, Chen, Xinyuan, Yang, Bining, Bi, Nan, Zhang, Tao, Men, Kuo, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550908/ https://www.ncbi.nlm.nih.gov/pubmed/33117694 http://dx.doi.org/10.3389/fonc.2020.564737 |
Ejemplares similares
-
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020) -
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023) -
A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2022) -
Analysis of Geometric Performance and Dosimetric Impact of Using Automatic Contour Segmentation for Radiotherapy Planning
por: Cao, Minsong, et al.
Publicado: (2020) -
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021)