Cargando…

Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates

Antibody–drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established...

Descripción completa

Detalles Bibliográficos
Autores principales: Källsten, Malin, Hartmann, Rafael, Kovac, Lucia, Lehmann, Fredrik, Lind, Sara Bergström, Bergquist, Jonas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551423/
https://www.ncbi.nlm.nih.gov/pubmed/32911603
http://dx.doi.org/10.3390/antib9030046
_version_ 1783593181279944704
author Källsten, Malin
Hartmann, Rafael
Kovac, Lucia
Lehmann, Fredrik
Lind, Sara Bergström
Bergquist, Jonas
author_facet Källsten, Malin
Hartmann, Rafael
Kovac, Lucia
Lehmann, Fredrik
Lind, Sara Bergström
Bergquist, Jonas
author_sort Källsten, Malin
collection PubMed
description Antibody–drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps—as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC–MS))—was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC–MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at −20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.
format Online
Article
Text
id pubmed-7551423
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75514232020-10-14 Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates Källsten, Malin Hartmann, Rafael Kovac, Lucia Lehmann, Fredrik Lind, Sara Bergström Bergquist, Jonas Antibodies (Basel) Article Antibody–drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps—as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC–MS))—was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC–MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at −20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures. MDPI 2020-09-08 /pmc/articles/PMC7551423/ /pubmed/32911603 http://dx.doi.org/10.3390/antib9030046 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Källsten, Malin
Hartmann, Rafael
Kovac, Lucia
Lehmann, Fredrik
Lind, Sara Bergström
Bergquist, Jonas
Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title_full Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title_fullStr Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title_full_unstemmed Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title_short Investigating the Impact of Sample Preparation on Mass Spectrometry-Based Drug-To-Antibody Ratio Determination for Cysteine- and Lysine-Linked Antibody–Drug Conjugates
title_sort investigating the impact of sample preparation on mass spectrometry-based drug-to-antibody ratio determination for cysteine- and lysine-linked antibody–drug conjugates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551423/
https://www.ncbi.nlm.nih.gov/pubmed/32911603
http://dx.doi.org/10.3390/antib9030046
work_keys_str_mv AT kallstenmalin investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates
AT hartmannrafael investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates
AT kovaclucia investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates
AT lehmannfredrik investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates
AT lindsarabergstrom investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates
AT bergquistjonas investigatingtheimpactofsamplepreparationonmassspectrometrybaseddrugtoantibodyratiodeterminationforcysteineandlysinelinkedantibodydrugconjugates