Cargando…
Convolutional Neural Network Based Approach to In Silico Non-Anticipating Prediction of Antigenic Distance for Influenza Virus
Evaluation of the antigenic similarity degree between the strains of the influenza virus is highly important for vaccine production. The conventional method used to measure such a degree is related to performing the immunological assays of hemagglutinin inhibition. Namely, the antigenic distance bet...
Autores principales: | Forghani, Majid, Khachay, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551508/ https://www.ncbi.nlm.nih.gov/pubmed/32932748 http://dx.doi.org/10.3390/v12091019 |
Ejemplares similares
-
Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks
por: Lee, Eva K., et al.
Publicado: (2020) -
Distance Field-Based Convolutional Neural Network for Edge Detection
por: Hu, Dadan, et al.
Publicado: (2022) -
Prediction of Antigenic Distance in Influenza A Using Attribute Network Embedding
por: Peng, Fujun, et al.
Publicado: (2023) -
Construction of a Prediction Model for Distance Education Quality Assessment Based on Convolutional Neural Network
por: Wang, Peizhang
Publicado: (2022) -
Identifying New Clusterons: Application of TBEV Analyzer 3.0
por: Forghani, Majid, et al.
Publicado: (2023)