Cargando…

Effects of Dietary Glucose and Fructose on Copper, Iron, and Zinc Metabolism Parameters in Humans

Alterations of transition metal levels have been associated with obesity, hepatic steatosis, and metabolic syndrome in humans. Studies in animals indicate an association between dietary sugars and copper metabolism. Our group has conducted a study in which young adults consumed beverages sweetened w...

Descripción completa

Detalles Bibliográficos
Autores principales: Harder, Nathaniel H. O., Hieronimus, Bettina, Stanhope, Kimber L., Shibata, Noreene M., Lee, Vivien, Nunez, Marinelle V., Keim, Nancy L., Bremer, Andrew, Havel, Peter J., Heffern, Marie C., Medici, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551875/
https://www.ncbi.nlm.nih.gov/pubmed/32854403
http://dx.doi.org/10.3390/nu12092581
Descripción
Sumario:Alterations of transition metal levels have been associated with obesity, hepatic steatosis, and metabolic syndrome in humans. Studies in animals indicate an association between dietary sugars and copper metabolism. Our group has conducted a study in which young adults consumed beverages sweetened with glucose, fructose, high fructose corn syrup (HFCS), or aspartame for two weeks and has reported that consumption of both fructose- and HFCS-sweetened beverages increased cardiovascular disease risk factors. Baseline and intervention serum samples from 107 participants of this study were measured for copper metabolism (copper, ceruloplasmin ferroxidase activity, ceruloplasmin protein), zinc levels, and iron metabolism (iron, ferritin, and transferrin) parameters. Fructose and/or glucose consumption were associated with decreased ceruloplasmin ferroxidase activity and serum copper and zinc concentrations. Ceruloplasmin protein levels did not change in response to intervention. The changes in copper concentrations were correlated with zinc, but not with iron. The decreases in copper, ceruloplasmin ferroxidase activity, ferritin, and transferrin were inversely associated with the increases in metabolic risk factors associated with sugar consumption, specifically, apolipoprotein CIII, triglycerides, or post-meal glucose, insulin, and lactate responses. These findings are the first evidence that consumption of sugar-sweetened beverages can alter clinical parameters of transition metal metabolism in healthy subjects.