Cargando…
Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model
In view of the harm of diabetes to the population, we have introduced an ensemble learning algorithm—EXtreme Gradient Boosting (XGBoost) to predict the risk of type 2 diabetes and compared it with Support Vector Machines (SVM), the Random Forest (RF) and K-Nearest Neighbor (K-NN) algorithm in order...
Autores principales: | Wang, Liyang, Wang, Xiaoya, Chen, Angxuan, Jin, Xian, Che, Huilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551910/ https://www.ncbi.nlm.nih.gov/pubmed/32751894 http://dx.doi.org/10.3390/healthcare8030247 |
Ejemplares similares
-
A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins
por: Wang, Liyang, et al.
Publicado: (2021) -
IGRNet: A Deep Learning Model for Non-Invasive, Real-Time Diagnosis of Prediabetes through Electrocardiograms
por: Wang, Liyang, et al.
Publicado: (2020) -
AK-DL: A Shallow Neural Network Model for Diagnosing Actinic Keratosis with Better Performance than Deep Neural Networks
por: Wang, Liyang, et al.
Publicado: (2020) -
HIV-1 tropism prediction by the XGboost and HMM methods
por: Chen, Xiang, et al.
Publicado: (2019) -
IRESpy: an XGBoost model for prediction of internal ribosome entry sites
por: Wang, Junhui, et al.
Publicado: (2019)