Cargando…

Gluten-free cookies with low glycemic index and glycemic load: optimization of the process variables via response surface methodology and artificial neural network

This research investigates the effect of baking temperature and time on the resistant starch (RS), glycemic index (GI) and glycemic load (GL) of gluten-free cookies, optimized the processing parameter using a chemometrics approach of response surface methodology (RSM) and artificial neural network (...

Descripción completa

Detalles Bibliográficos
Autores principales: Olawoye, Babatunde, Gbadamosi, Saka O., Otemuyiwa, Israel O., Akanbi, Charles T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552101/
https://www.ncbi.nlm.nih.gov/pubmed/33083603
http://dx.doi.org/10.1016/j.heliyon.2020.e05117
Descripción
Sumario:This research investigates the effect of baking temperature and time on the resistant starch (RS), glycemic index (GI) and glycemic load (GL) of gluten-free cookies, optimized the processing parameter using a chemometrics approach of response surface methodology (RSM) and artificial neural network (ANN). The in-vitro starch digestibility of the formulated cookies exhibited a monophasic starch digestogram. Increase in resistant starch, and a decrease in the predicted GI of the cookies, was associated with low temperature and high baking time. The use of RSM and ANN modelling techniques accurately predict the RS, pGI and GL (coefficient of determinant, R(2) > 0.93 and root mean square of error = 0.43–0.62) of the gluten-free cookies. The optimal condition for the production of cookies with high RS, low pGI and GL were baking temperature of 158 °C and baking time of 20 min with predicted RS value of 19.61 g/100g of dry starch, pGI value of 56.98 and GL value 52.64.