Cargando…

Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage

SIMPLE SUMMARY: The objective of this study was to examine the effect of sodium formate and calcium propionate on the fermentation quality and microbial community of wet brewers grains (WBG) after short-term storage. Both additives improved the silage quality of WBG ensiled for 20 days to different...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Jingyi, Fang, Xinpeng, Feng, Guanzhi, Zhang, Guangning, Zhao, Chao, Zhang, Yonggen, Li, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552127/
https://www.ncbi.nlm.nih.gov/pubmed/32916916
http://dx.doi.org/10.3390/ani10091608
_version_ 1783593332548567040
author Lv, Jingyi
Fang, Xinpeng
Feng, Guanzhi
Zhang, Guangning
Zhao, Chao
Zhang, Yonggen
Li, Yang
author_facet Lv, Jingyi
Fang, Xinpeng
Feng, Guanzhi
Zhang, Guangning
Zhao, Chao
Zhang, Yonggen
Li, Yang
author_sort Lv, Jingyi
collection PubMed
description SIMPLE SUMMARY: The objective of this study was to examine the effect of sodium formate and calcium propionate on the fermentation quality and microbial community of wet brewers grains (WBG) after short-term storage. Both additives improved the silage quality of WBG ensiled for 20 days to different extents. However, ensiled WBG treated with sodium formate had higher contents of dry matter, water-soluble carbohydrates, and neutral detergent fibers and better fermentation quality, rumen degradation, and microbial composition. The addition of sodium formate enhances the abundance of desirable Lactobacillus and reduces the abundance of undesirable microorganisms, including Clostridium. In summary, during short-term storage of high-moisture feed, sodium formate has a more beneficial preservation effect than an equivalent dose of calcium propionate. ABSTRACT: The objective of this research was to examine the effect of sodium formate (SF) and calcium propionate (CAP) on the fermentation characteristics and microbial community of wet brewers grains (WBG) after short-term storage. In the laboratory environment, fresh WBG was ensiled with (1) no additive (CON), (2) sodium formate (SF, 3 g/kg fresh weight), and (3) calcium propionate (CAP, 3 g/kg fresh weight) for 20 days. After opening, fermentation characteristics, chemical composition, rumen effective degradability, and the microbial community of ensiled WBG were analyzed. The addition of CAP had no effect on pH and lactic acid concentration and increased the concentrations of propionic acid; the SF group had the lowest pH and acetic acid, butyric acid, and ammonia nitrogen contents and the highest lactic acid concentration. After fermentation, the SF group had the highest contents of dry matter (DM), water-soluble carbohydrates (WSCs), and neutral detergent fiber (NDF). The contents of the three nutrients in the CAP group were significantly higher than those in the CON group. The addition of the two additives had little influence on the crude protein (CP) and acid detergent fiber (ADF) contents of the ensiled WBG. Two additives elevated in situ effective degradability of DM and NDF compared with the parameters detected in the CON group; WBG ensiled with SF had higher effective in situ CP degradability than that in the CON and CAP groups. The results of the principal component analysis indicate that the SF group and two other groups had notable differences in bacterial composition. The analysis of the genus level of the bacterial flora showed that the content of Lactobacillus in the SF group was significantly higher than that in the two other treatment groups, while the content of Clostridium was significantly lower than that in the two other treatment groups. Therefore, the addition of sodium formate can suppress the undesirable microorganisms, improve the fermentation qualities, and ensure that WBG is well preserved after 20 days of ensiling.
format Online
Article
Text
id pubmed-7552127
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75521272020-10-16 Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage Lv, Jingyi Fang, Xinpeng Feng, Guanzhi Zhang, Guangning Zhao, Chao Zhang, Yonggen Li, Yang Animals (Basel) Article SIMPLE SUMMARY: The objective of this study was to examine the effect of sodium formate and calcium propionate on the fermentation quality and microbial community of wet brewers grains (WBG) after short-term storage. Both additives improved the silage quality of WBG ensiled for 20 days to different extents. However, ensiled WBG treated with sodium formate had higher contents of dry matter, water-soluble carbohydrates, and neutral detergent fibers and better fermentation quality, rumen degradation, and microbial composition. The addition of sodium formate enhances the abundance of desirable Lactobacillus and reduces the abundance of undesirable microorganisms, including Clostridium. In summary, during short-term storage of high-moisture feed, sodium formate has a more beneficial preservation effect than an equivalent dose of calcium propionate. ABSTRACT: The objective of this research was to examine the effect of sodium formate (SF) and calcium propionate (CAP) on the fermentation characteristics and microbial community of wet brewers grains (WBG) after short-term storage. In the laboratory environment, fresh WBG was ensiled with (1) no additive (CON), (2) sodium formate (SF, 3 g/kg fresh weight), and (3) calcium propionate (CAP, 3 g/kg fresh weight) for 20 days. After opening, fermentation characteristics, chemical composition, rumen effective degradability, and the microbial community of ensiled WBG were analyzed. The addition of CAP had no effect on pH and lactic acid concentration and increased the concentrations of propionic acid; the SF group had the lowest pH and acetic acid, butyric acid, and ammonia nitrogen contents and the highest lactic acid concentration. After fermentation, the SF group had the highest contents of dry matter (DM), water-soluble carbohydrates (WSCs), and neutral detergent fiber (NDF). The contents of the three nutrients in the CAP group were significantly higher than those in the CON group. The addition of the two additives had little influence on the crude protein (CP) and acid detergent fiber (ADF) contents of the ensiled WBG. Two additives elevated in situ effective degradability of DM and NDF compared with the parameters detected in the CON group; WBG ensiled with SF had higher effective in situ CP degradability than that in the CON and CAP groups. The results of the principal component analysis indicate that the SF group and two other groups had notable differences in bacterial composition. The analysis of the genus level of the bacterial flora showed that the content of Lactobacillus in the SF group was significantly higher than that in the two other treatment groups, while the content of Clostridium was significantly lower than that in the two other treatment groups. Therefore, the addition of sodium formate can suppress the undesirable microorganisms, improve the fermentation qualities, and ensure that WBG is well preserved after 20 days of ensiling. MDPI 2020-09-09 /pmc/articles/PMC7552127/ /pubmed/32916916 http://dx.doi.org/10.3390/ani10091608 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lv, Jingyi
Fang, Xinpeng
Feng, Guanzhi
Zhang, Guangning
Zhao, Chao
Zhang, Yonggen
Li, Yang
Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title_full Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title_fullStr Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title_full_unstemmed Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title_short Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
title_sort effects of sodium formate and calcium propionate additives on the fermentation quality and microbial community of wet brewers grains after short-term storage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552127/
https://www.ncbi.nlm.nih.gov/pubmed/32916916
http://dx.doi.org/10.3390/ani10091608
work_keys_str_mv AT lvjingyi effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT fangxinpeng effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT fengguanzhi effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT zhangguangning effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT zhaochao effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT zhangyonggen effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage
AT liyang effectsofsodiumformateandcalciumpropionateadditivesonthefermentationqualityandmicrobialcommunityofwetbrewersgrainsaftershorttermstorage