Cargando…

Multiple Xenosteroid Pollutants Biomarker Changes in Cultured Nile Tilapia Using Wastewater Effluents as Their Primary Water Source

SIMPLE SUMMARY: Estrogenic endocrine disruptive chemicals (E-EDCs) are important types of pollutants in fish farms worldwide and a globally concerned problem. In this study, Nile tilapia fish farms receiving wastewater effluents in Egypt were selected as highly, moderately polluted fish farms; besid...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahran, Eman, Elmetwally, Mohammed, Awadin, Walaa, El-Matbouli, Mansour
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552199/
https://www.ncbi.nlm.nih.gov/pubmed/32842613
http://dx.doi.org/10.3390/ani10091475
Descripción
Sumario:SIMPLE SUMMARY: Estrogenic endocrine disruptive chemicals (E-EDCs) are important types of pollutants in fish farms worldwide and a globally concerned problem. In this study, Nile tilapia fish farms receiving wastewater effluents in Egypt were selected as highly, moderately polluted fish farms; besides, a putative control site was deemed low in contamination. Levels of E-EDCs (natural and synthetic steroids, and industrial phenolic compound/bisphenol A (BPA)) was recorded in farm water, and fish tissues at all sites under consideration, mainly, lower levels of testosterone, progesterone, zeranol, and 17β-estradiol were detected compared to the higher level of BPA. Moreover, the effects of these pollutants on fish biometric, reproductive genes, and hormonal biomarkers was evaluated along with the observed associated histopathological alterations. Our findings revealed the detection of some steroidal compounds with a higher level of the BPA. All analyzed biomarkers were reduced to a great extent in the highly polluted sites compared to others, and the histopathological alterations observed were supportive of other measurements. These observations warrant strict monitoring of aquatic pollution sources and the development of strategic plans to control aquaculture pollution. ABSTRACT: This study was undertaken to screen levels of xenosteroids (estrogenic endocrine disrupting chemicals/E-EDCs) in Nile tilapia (Oreochromis niloticus) fish farms subjected to water fill from the drain at three sites S1 (highly polluted), S2 (moderately polluted), and a putative reference site (RS). Biometric, hormonal, gene expression, and histopathological analysis were investigated. Testosterone, progesterone, and zeranol residues were detected at (0.12–3.44 µg/L) in water samples of different sites. Bisphenol-A (BPA) exhibited a very high concentration (6.5 µg/mL) in water samples from S1. Testosterone, 17β-estradiol residues were detected in fish tissues from all sites at (0.16–3.8 µg/Kg) and (1.05–5.01 µg/Kg), respectively. BPA residues were detected at a very high concentration in the liver and muscle of fish collected from S1 at higher levels of 25.9 and 48.07 µg/Kg, respectively. The detected E-EDCs, at different sites, particularly BPA, reduced the somatic and testicular growth among sites and oversampling time points. Meanwhile, hepatosomatic index (HSI) was significantly increased in S1 compared to S2. All analyzed genes estrogen receptor-type I (er-I, er-ɑ) and II (er-II, er-ß1), polypeptide 1a (cyp19a1), SRY-box containing gene 9 (sox9), and vitellogenin (vtg) and gonadotropin hormones (luteinizing hormone (LH), follicle-stimulating hormone (FSH)), testosterone, 17β-estradiol, and anti-Mullerian hormone (AMH) were significantly expressed at S1 compared to other sites. Histopathology was more evident in S1 than other sites. These findings warrant immediate strategies development to control aquatic pollution and maintain fish welfare and aquaculture sustainability.