Cargando…

Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens)

SIMPLE SUMMARY: Yak, a bovid animal, is the predominant livestock on the Qinghai–Tibet Plateau. Rumen is an important digestive organ for ruminants, such as cattle, yak, and sheep. Rumen bacteria play a crucial role in dietary energy digestion of yaks and in their adaptation to the plateau environme...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Rui, Zou, Huawei, Wang, Hongze, Wang, Zhisheng, Wang, Xueying, Ma, Jian, Shah, Ali Mujtaba, Peng, Quanhui, Xue, Bai, Wang, Lizhi, Zhao, Suonan, Kong, Xiangying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552236/
https://www.ncbi.nlm.nih.gov/pubmed/32842565
http://dx.doi.org/10.3390/ani10091474
Descripción
Sumario:SIMPLE SUMMARY: Yak, a bovid animal, is the predominant livestock on the Qinghai–Tibet Plateau. Rumen is an important digestive organ for ruminants, such as cattle, yak, and sheep. Rumen bacteria play a crucial role in dietary energy digestion of yaks and in their adaptation to the plateau environment. Dietary energy levels affect rumen bacterial populations and lipid deposition in the meat of ruminants. The intramuscular fat fatty acid profile is important for meat quality and human health. This study was conducted to determine the rumen bacterial populations affected by dietary energy levels and understand their relationship with intramuscular fat fatty acids. The results found that increasing dietary energy significantly increased ruminal propionate concentration and reduced the ammonia concentration. High dietary energy increased the ratio of Firmicutes to Bacteroidetes and mainly increased ruminal amylolytic and propionate-producing bacteria populations. Ruminal acetate and propionate were positively related to intramuscular saturated fatty acid content, and Prevotella was positively related to intramuscular polyunsaturated fatty acid content and negatively related to intramuscular saturated fatty acid content. This study gives insights into how the effects of dietary energy on rumen bacterial populations are related to intramuscular fat fatty acids of yaks. ABSTRACT: The yak rumen microflora has more efficient fiber-degrading and energy-harvesting abilities than that of low-altitude cattle; however, few studies have investigated the effects of dietary energy levels on the rumen bacterial populations and the relationship between rumen bacteria and the intramuscular fatty acid profile of fattening yaks. In this study, thirty yaks were randomly assigned to three groups. Each group received one of the three isonitrogenous diets with low (3.72 MJ/kg), medium (4.52 MJ/kg), and high (5.32 MJ/kg) levels of net energy for maintenance and fattening. After 120 days of feeding, results showed that increasing dietary energy significantly increased ruminal propionate fermentation and reduced ammonia concentration. The 16S rDNA sequencing results showed that increasing dietary energy significantly increased the ratio of Firmicutes to Bacteroidetes and stimulated the relative abundance of Succiniclasticum, Saccharofermentans, Ruminococcus, and Blautia populations. The quantitative real-time PCR analysis showed that high dietary energy increased the abundances of Streptococcus bovis, Prevotella ruminicola, and Ruminobacter amylophilus at the species level. Association analysis showed that ruminal acetate was positively related to some intramuscular saturated fatty acid (SFA) contents, and Prevotella was significantly positively related to intramuscular total polyunsaturated fatty acid content and negatively related to intramuscular total SFA content. This study showed that high dietary energy mainly increased ruminal amylolytic and propionate-producing bacteria populations, which gave insights into how the effects of dietary energy on rumen bacteria are related to intramuscular fat fatty acids of fattening yaks.