Cargando…

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)

SIMPLE SUMMARY: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic COVID-19. The virus infects human cells by binding of the virus spike to the cell receptor ACE2. Some studies suggest that dogs, cats and other animal species could be infected by SARS-CoV-2,...

Descripción completa

Detalles Bibliográficos
Autor principal: Preziuso, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552617/
https://www.ncbi.nlm.nih.gov/pubmed/32825305
http://dx.doi.org/10.3390/ani10091460
_version_ 1783593438557503488
author Preziuso, Silvia
author_facet Preziuso, Silvia
author_sort Preziuso, Silvia
collection PubMed
description SIMPLE SUMMARY: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic COVID-19. The virus infects human cells by binding of the virus spike to the cell receptor ACE2. Some studies suggest that dogs, cats and other animal species could be infected by SARS-CoV-2, while very limited data are available on lagomorphs. There are several occasions where rabbits and other lagomorphs are in close contact with humans. To investigate the interaction between SARS-CoV-2 spikes and ACE2 of lagomorphs, predictive computer-based models were used in this study. The structure of ACE2 of lagomorphs was obtained on the basis of the amino acid sequences computationally. The interaction with the model of SARS-CoV-2 spikes was studied and described in depth on the basis of the complex human ACE2-SARS-CoV-2 published before. The interaction among SARS-CoV-2 spikes and ACE2 of other companion or laboratory animals is also described for comparative purposes. The results predict that ACE2 of lagomorphs are likely to bind SARS-CoV-2 spikes and suggest that further studies would be justified to confirm these results and to evaluate the risks to humans being in close contact with lagomorphs, such as veterinarians, farmers, slaughterhouse workers, butchers or pet owners. ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic COVID-19. The virus infects human cells by binding of the virus spike to the cell receptor ACE2. The crystal structure of SARS-CoV-2 spikes in complex with human ACE2 has recently been solved, and the main amino acid residues involved in the virus–receptor complex have been detected. To investigate the affinity of ACE2 of lagomorphs to the SARS-CoV-2 spike, ACE2 sequences from rabbits and American pikas were compared with human ACE2 and with ACE2 from mammals with different susceptibility to the virus. Models of the complex formed by SARS-CoV-2 spike and ACE2 from lagomorphs and from other mammals were created for comparative studies. ACE2 of lagomorphs showed fewer substitutions than human ACE2 in residues involved in the ACE2-SARS-CoV-2 spike complex, similar to cats. Analysis of the binding interface of the simulated complexes ACE2-SARS-CoV-2 spike showed high affinity of the ACE2 of lagomorphs to the viral spike protein. These findings suggest that the spike of SARS-CoV-2 could bind the ACE2 receptor of lagomorphs, and future studies should investigate the role of lagomorphs in SARS-CoV-2 epidemiology. Furthermore, the risks to humans coming into close contacts with these animals should be evaluated.
format Online
Article
Text
id pubmed-7552617
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75526172020-10-14 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas) Preziuso, Silvia Animals (Basel) Communication SIMPLE SUMMARY: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic COVID-19. The virus infects human cells by binding of the virus spike to the cell receptor ACE2. Some studies suggest that dogs, cats and other animal species could be infected by SARS-CoV-2, while very limited data are available on lagomorphs. There are several occasions where rabbits and other lagomorphs are in close contact with humans. To investigate the interaction between SARS-CoV-2 spikes and ACE2 of lagomorphs, predictive computer-based models were used in this study. The structure of ACE2 of lagomorphs was obtained on the basis of the amino acid sequences computationally. The interaction with the model of SARS-CoV-2 spikes was studied and described in depth on the basis of the complex human ACE2-SARS-CoV-2 published before. The interaction among SARS-CoV-2 spikes and ACE2 of other companion or laboratory animals is also described for comparative purposes. The results predict that ACE2 of lagomorphs are likely to bind SARS-CoV-2 spikes and suggest that further studies would be justified to confirm these results and to evaluate the risks to humans being in close contact with lagomorphs, such as veterinarians, farmers, slaughterhouse workers, butchers or pet owners. ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic COVID-19. The virus infects human cells by binding of the virus spike to the cell receptor ACE2. The crystal structure of SARS-CoV-2 spikes in complex with human ACE2 has recently been solved, and the main amino acid residues involved in the virus–receptor complex have been detected. To investigate the affinity of ACE2 of lagomorphs to the SARS-CoV-2 spike, ACE2 sequences from rabbits and American pikas were compared with human ACE2 and with ACE2 from mammals with different susceptibility to the virus. Models of the complex formed by SARS-CoV-2 spike and ACE2 from lagomorphs and from other mammals were created for comparative studies. ACE2 of lagomorphs showed fewer substitutions than human ACE2 in residues involved in the ACE2-SARS-CoV-2 spike complex, similar to cats. Analysis of the binding interface of the simulated complexes ACE2-SARS-CoV-2 spike showed high affinity of the ACE2 of lagomorphs to the viral spike protein. These findings suggest that the spike of SARS-CoV-2 could bind the ACE2 receptor of lagomorphs, and future studies should investigate the role of lagomorphs in SARS-CoV-2 epidemiology. Furthermore, the risks to humans coming into close contacts with these animals should be evaluated. MDPI 2020-08-20 /pmc/articles/PMC7552617/ /pubmed/32825305 http://dx.doi.org/10.3390/ani10091460 Text en © 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Preziuso, Silvia
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title_full Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title_fullStr Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title_full_unstemmed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title_short Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Exhibits High Predicted Binding Affinity to ACE2 from Lagomorphs (Rabbits and Pikas)
title_sort severe acute respiratory syndrome coronavirus 2 (sars-cov-2) exhibits high predicted binding affinity to ace2 from lagomorphs (rabbits and pikas)
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552617/
https://www.ncbi.nlm.nih.gov/pubmed/32825305
http://dx.doi.org/10.3390/ani10091460
work_keys_str_mv AT preziusosilvia severeacuterespiratorysyndromecoronavirus2sarscov2exhibitshighpredictedbindingaffinitytoace2fromlagomorphsrabbitsandpikas