Cargando…
An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hAS...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552624/ https://www.ncbi.nlm.nih.gov/pubmed/32698363 http://dx.doi.org/10.3390/bioengineering7030077 |
_version_ | 1783593439996149760 |
---|---|
author | Jossen, Valentin Muoio, Francesco Panella, Stefano Harder, Yves Tallone, Tiziano Eibl, Regine |
author_facet | Jossen, Valentin Muoio, Francesco Panella, Stefano Harder, Yves Tallone, Tiziano Eibl, Regine |
author_sort | Jossen, Valentin |
collection | PubMed |
description | Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 10(5) hASCs/cm(2) were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m(3), τ(nt) = 4.96 × 10(−3) Pa) acting at N(s1u) (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 10(5) hASCs/cm(2) (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies. |
format | Online Article Text |
id | pubmed-7552624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75526242020-10-14 An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies Jossen, Valentin Muoio, Francesco Panella, Stefano Harder, Yves Tallone, Tiziano Eibl, Regine Bioengineering (Basel) Article Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 10(5) hASCs/cm(2) were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m(3), τ(nt) = 4.96 × 10(−3) Pa) acting at N(s1u) (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 10(5) hASCs/cm(2) (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies. MDPI 2020-07-20 /pmc/articles/PMC7552624/ /pubmed/32698363 http://dx.doi.org/10.3390/bioengineering7030077 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jossen, Valentin Muoio, Francesco Panella, Stefano Harder, Yves Tallone, Tiziano Eibl, Regine An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title | An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title_full | An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title_fullStr | An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title_full_unstemmed | An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title_short | An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies |
title_sort | approach towards a gmp compliant in-vitro expansion of human adipose stem cells for autologous therapies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552624/ https://www.ncbi.nlm.nih.gov/pubmed/32698363 http://dx.doi.org/10.3390/bioengineering7030077 |
work_keys_str_mv | AT jossenvalentin anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT muoiofrancesco anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT panellastefano anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT harderyves anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT tallonetiziano anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT eiblregine anapproachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT jossenvalentin approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT muoiofrancesco approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT panellastefano approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT harderyves approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT tallonetiziano approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies AT eiblregine approachtowardsagmpcompliantinvitroexpansionofhumanadiposestemcellsforautologoustherapies |