Cargando…

Using Velocity to Predict the Maximum Dynamic Strength in the Power Clean

The primary aim of the present study was to examine the commonly performed training exercise for athlete preparation. Twenty-two recreationally trained males (age: 26.3 ± 4.1 y, height: 1.80 ± 0.07 m; body mass (BM): 87.01 ± 13.75 kg, 1-repetitoon maximum(1-RM)/BM: 0.90 ± 0.19 kg) participated in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Haff, G. Gregory, Garcia-Ramos, Amador, James, Lachlan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552626/
https://www.ncbi.nlm.nih.gov/pubmed/32961845
http://dx.doi.org/10.3390/sports8090129
Descripción
Sumario:The primary aim of the present study was to examine the commonly performed training exercise for athlete preparation. Twenty-two recreationally trained males (age: 26.3 ± 4.1 y, height: 1.80 ± 0.07 m; body mass (BM): 87.01 ± 13.75 kg, 1-repetitoon maximum(1-RM)/BM: 0.90 ± 0.19 kg) participated in the present study. All subjects had their 1-RM power clean tested with standard procedures. On a separate testing day, subjects performed three repetitions at 30% and 45%, and two repetitions at 70% and 80% of their 1-RM power clean. During all trials during both sessions, peak velocity (PV) and mean velocity (MV) were measured with the use of a GymAware device. There were no significant differences between the actual and estimated 1-RM power clean (p = 0.37, ES = −0.11) when the load-PV profile was utilized. There was a large typical error (TE) present for the load-PV- and load-MV-estimated 1-RM values. Additionally, the raw TE exceeded the smallest worthwhile change for both load-PV and load-MV profile results. Based upon the results of this study, the load-velocity profile is not an acceptable tool for monitoring power clean strength.