Cargando…

Anti-Biofilm Effect of Tea Saponin on a Streptococcus agalactiae Strain Isolated from Bovine Mastitis

SIMPLE SUMMARY: Tea saponin (TS), an inexpensive and easily-available plant extract, exhibited antibacterial activity against a Streptococcus agalactiae strain isolated from a dairy cow with mastitis. In addition, TS can inhibit the biofilm formation ability of this strain by down-regulating the tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Fei, Wang, Hui, Xue, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552639/
https://www.ncbi.nlm.nih.gov/pubmed/32971787
http://dx.doi.org/10.3390/ani10091713
Descripción
Sumario:SIMPLE SUMMARY: Tea saponin (TS), an inexpensive and easily-available plant extract, exhibited antibacterial activity against a Streptococcus agalactiae strain isolated from a dairy cow with mastitis. In addition, TS can inhibit the biofilm formation ability of this strain by down-regulating the transcript levels of biofilm-associated genes including srtA, fbsC, neuA, and cpsE. Hence, TS might be a potential alternative herbal cure for bovine mastitis. ABSTRACT: Streptococcus agalactiae (GBS) is a highly contagious pathogen which not only can cause neonatal meningitis, pneumonia, and septicemia but is also considered to be a major cause of bovine mastitis (BM), leading to large economic losses to the dairy industry worldwide. Like many other pathogenic bacteria, GBS also has the capacity to form a biofilm structure in the host to cause persistent infection. Tea saponin (TS), is one of the main active agents extracted from tea ash powder, and it has good antioxidant and antibacterial activities. In this study, we confirmed that TS has a slight antibacterial activity against a Streptococcus agalactiae strain isolated from dairy cow with mastitis and inhibits its biofilm formation. By performing scanning electron microscopy (SEM) experiments, we observed that with addition of TS, the biofilm formed by this GBS strain exhibited looser structure and lower density. In addition, the results of real-time reverse transcription polymerase chain reaction (RT-PCR) experiments showed that TS inhibited biofilm formation by down-regulating the transcription of the biofilm-associated genes including srtA, fbsC, neuA, and cpsE.