Cargando…
A Preliminary Study for Distinguish Hormone-Secreting Functional Adrenocortical Adenoma Subtypes Using Multiparametric CT Radiomics-Based Machine Learning Model and Nomogram
Purpose: To explore the application value of multiparametric computed tomography (CT) radiomics in non-invasive differentiation between aldosterone-producing and cortisol-producing functional adrenocortical adenomas. Methods: This retrospective review analyzed 83 patients including 41 patients with...
Autores principales: | Zheng, Yineng, Liu, Xin, Zhong, Yi, Lv, Fajin, Yang, Haitao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552922/ https://www.ncbi.nlm.nih.gov/pubmed/33117700 http://dx.doi.org/10.3389/fonc.2020.570502 |
Ejemplares similares
-
Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
por: Zheng, Yineng, et al.
Publicado: (2021) -
A CT-Based Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma
por: Xv, Yingjie, et al.
Publicado: (2021) -
A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours
por: Sun, Weikai, et al.
Publicado: (2021) -
Usefulness of the Texture Signatures Based on Multiparametric MRI in Predicting Growth Hormone Pituitary Adenoma Subtypes
por: Liu, Chen-Xi, et al.
Publicado: (2021) -
Radiomics: a new tool to differentiate adrenocortical adenoma from carcinoma
por: Torresan, F, et al.
Publicado: (2021)