Cargando…

Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles

PURPOSE: To develop a practical technique for visualizing and quantifying retinal ganglion cell (RGC) axon bundles in vivo. METHODS: We applied visible-light optical coherence tomography (vis-OCT) to image the RGC axon bundles, referred to as vis-OCT fibergraphy, of healthy wild-type C57BL/6 mice. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, David A., Grannonico, Marta, Liu, Mingna, Kuranov, Roman V., Netland, Peter A., Liu, Xiaorong, Zhang, Hao F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552935/
https://www.ncbi.nlm.nih.gov/pubmed/33110707
http://dx.doi.org/10.1167/tvst.9.11.11
_version_ 1783593503252545536
author Miller, David A.
Grannonico, Marta
Liu, Mingna
Kuranov, Roman V.
Netland, Peter A.
Liu, Xiaorong
Zhang, Hao F.
author_facet Miller, David A.
Grannonico, Marta
Liu, Mingna
Kuranov, Roman V.
Netland, Peter A.
Liu, Xiaorong
Zhang, Hao F.
author_sort Miller, David A.
collection PubMed
description PURPOSE: To develop a practical technique for visualizing and quantifying retinal ganglion cell (RGC) axon bundles in vivo. METHODS: We applied visible-light optical coherence tomography (vis-OCT) to image the RGC axon bundles, referred to as vis-OCT fibergraphy, of healthy wild-type C57BL/6 mice. After vis-OCT imaging, retinas were flat-mounted, immunostained with anti-beta-III tubulin (Tuj1) antibody for RGC axons, and imaged with confocal microscopy. We quantitatively compared the RGC axon bundle networks imaged by in vivo vis-OCT and ex vivo confocal microscopy using semi-log Sholl analysis. RESULTS: Side-by-side comparison of ex vivo confocal microscopy and in vivo vis-OCT confirmed that vis-OCT fibergraphy captures true RGC axon bundle networks. The semi-log Sholl regression coefficients extracted from vis-OCT fibergrams (3.7 ± 0.8 mm(–1)) and confocal microscopy (3.6 ± 0.3 mm(–1)) images also showed good agreement with each other (n = 6). CONCLUSIONS: We demonstrated the feasibility of using vis-OCT fibergraphy to visualize RGC axon bundles. Further applying Sholl analysis has the potential to identify biomarkers for non-invasively assessing RGC health. TRANSLATIONAL RELEVANCE: Our novel technique for visualizing and quantifying RGC axon bundles in vivo provides a potential measurement tool for diagnosing and tracking the progression of optic neuropathies.
format Online
Article
Text
id pubmed-7552935
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-75529352020-10-26 Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles Miller, David A. Grannonico, Marta Liu, Mingna Kuranov, Roman V. Netland, Peter A. Liu, Xiaorong Zhang, Hao F. Transl Vis Sci Technol Article PURPOSE: To develop a practical technique for visualizing and quantifying retinal ganglion cell (RGC) axon bundles in vivo. METHODS: We applied visible-light optical coherence tomography (vis-OCT) to image the RGC axon bundles, referred to as vis-OCT fibergraphy, of healthy wild-type C57BL/6 mice. After vis-OCT imaging, retinas were flat-mounted, immunostained with anti-beta-III tubulin (Tuj1) antibody for RGC axons, and imaged with confocal microscopy. We quantitatively compared the RGC axon bundle networks imaged by in vivo vis-OCT and ex vivo confocal microscopy using semi-log Sholl analysis. RESULTS: Side-by-side comparison of ex vivo confocal microscopy and in vivo vis-OCT confirmed that vis-OCT fibergraphy captures true RGC axon bundle networks. The semi-log Sholl regression coefficients extracted from vis-OCT fibergrams (3.7 ± 0.8 mm(–1)) and confocal microscopy (3.6 ± 0.3 mm(–1)) images also showed good agreement with each other (n = 6). CONCLUSIONS: We demonstrated the feasibility of using vis-OCT fibergraphy to visualize RGC axon bundles. Further applying Sholl analysis has the potential to identify biomarkers for non-invasively assessing RGC health. TRANSLATIONAL RELEVANCE: Our novel technique for visualizing and quantifying RGC axon bundles in vivo provides a potential measurement tool for diagnosing and tracking the progression of optic neuropathies. The Association for Research in Vision and Ophthalmology 2020-10-09 /pmc/articles/PMC7552935/ /pubmed/33110707 http://dx.doi.org/10.1167/tvst.9.11.11 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Miller, David A.
Grannonico, Marta
Liu, Mingna
Kuranov, Roman V.
Netland, Peter A.
Liu, Xiaorong
Zhang, Hao F.
Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title_full Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title_fullStr Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title_full_unstemmed Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title_short Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles
title_sort visible-light optical coherence tomography fibergraphy for quantitative imaging of retinal ganglion cell axon bundles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552935/
https://www.ncbi.nlm.nih.gov/pubmed/33110707
http://dx.doi.org/10.1167/tvst.9.11.11
work_keys_str_mv AT millerdavida visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT grannonicomarta visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT liumingna visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT kuranovromanv visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT netlandpetera visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT liuxiaorong visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles
AT zhanghaof visiblelightopticalcoherencetomographyfibergraphyforquantitativeimagingofretinalganglioncellaxonbundles