Cargando…
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning
PURPOSE: We proposed a deep convolutional neural network (CNN), named Retinal Fluid Segmentation Network (ReF-Net), to segment retinal fluid in diabetic macular edema (DME) in optical coherence tomography (OCT) volumes. METHODS: The 3- × 3-mm OCT scans were acquired on one eye by a 70-kHz OCT commer...
Autores principales: | Guo, Yukun, Hormel, Tristan T., Xiong, Honglian, Wang, Jie, Hwang, Thomas S., Jia, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552937/ https://www.ncbi.nlm.nih.gov/pubmed/33110708 http://dx.doi.org/10.1167/tvst.9.2.54 |
Ejemplares similares
-
Automated phase unwrapping in Doppler optical coherence tomography
por: Pi, Shaohua, et al.
Publicado: (2019) -
Perfused and Nonperfused Microaneurysms Identified and Characterized by Structural and Angiographic OCT
por: Gao, Min, et al.
Publicado: (2023) -
Methodological Challenges of Deep Learning in Optical Coherence Tomography for Retinal Diseases: A Review
por: Yanagihara, Ryan T., et al.
Publicado: (2020) -
Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders
por: Zheng, Ce, et al.
Publicado: (2020) -
An Intelligent Optical Coherence Tomography-based System for Pathological Retinal Cases Identification and Urgent Referrals
por: Wang, Lilong, et al.
Publicado: (2020)