Cargando…

Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation

The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabol...

Descripción completa

Detalles Bibliográficos
Autores principales: Genoula, Melanie, Marín Franco, José Luis, Maio, Mariano, Dolotowicz, Belén, Ferreyra, Malena, Milillo, M. Ayelén, Mascarau, Rémi, Moraña, Eduardo José, Palmero, Domingo, Matteo, Mario, Fuentes, Federico, López, Beatriz, Barrionuevo, Paula, Neyrolles, Olivier, Cougoule, Céline, Lugo-Villarino, Geanncarlo, Vérollet, Christel, Sasiain, María del Carmen, Balboa, Luciana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553279/
https://www.ncbi.nlm.nih.gov/pubmed/33002063
http://dx.doi.org/10.1371/journal.ppat.1008929
_version_ 1783593567332073472
author Genoula, Melanie
Marín Franco, José Luis
Maio, Mariano
Dolotowicz, Belén
Ferreyra, Malena
Milillo, M. Ayelén
Mascarau, Rémi
Moraña, Eduardo José
Palmero, Domingo
Matteo, Mario
Fuentes, Federico
López, Beatriz
Barrionuevo, Paula
Neyrolles, Olivier
Cougoule, Céline
Lugo-Villarino, Geanncarlo
Vérollet, Christel
Sasiain, María del Carmen
Balboa, Luciana
author_facet Genoula, Melanie
Marín Franco, José Luis
Maio, Mariano
Dolotowicz, Belén
Ferreyra, Malena
Milillo, M. Ayelén
Mascarau, Rémi
Moraña, Eduardo José
Palmero, Domingo
Matteo, Mario
Fuentes, Federico
López, Beatriz
Barrionuevo, Paula
Neyrolles, Olivier
Cougoule, Céline
Lugo-Villarino, Geanncarlo
Vérollet, Christel
Sasiain, María del Carmen
Balboa, Luciana
author_sort Genoula, Melanie
collection PubMed
description The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.
format Online
Article
Text
id pubmed-7553279
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-75532792020-10-21 Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation Genoula, Melanie Marín Franco, José Luis Maio, Mariano Dolotowicz, Belén Ferreyra, Malena Milillo, M. Ayelén Mascarau, Rémi Moraña, Eduardo José Palmero, Domingo Matteo, Mario Fuentes, Federico López, Beatriz Barrionuevo, Paula Neyrolles, Olivier Cougoule, Céline Lugo-Villarino, Geanncarlo Vérollet, Christel Sasiain, María del Carmen Balboa, Luciana PLoS Pathog Research Article The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies. Public Library of Science 2020-10-01 /pmc/articles/PMC7553279/ /pubmed/33002063 http://dx.doi.org/10.1371/journal.ppat.1008929 Text en © 2020 Genoula et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Genoula, Melanie
Marín Franco, José Luis
Maio, Mariano
Dolotowicz, Belén
Ferreyra, Malena
Milillo, M. Ayelén
Mascarau, Rémi
Moraña, Eduardo José
Palmero, Domingo
Matteo, Mario
Fuentes, Federico
López, Beatriz
Barrionuevo, Paula
Neyrolles, Olivier
Cougoule, Céline
Lugo-Villarino, Geanncarlo
Vérollet, Christel
Sasiain, María del Carmen
Balboa, Luciana
Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title_full Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title_fullStr Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title_full_unstemmed Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title_short Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
title_sort fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via hif-1α activation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553279/
https://www.ncbi.nlm.nih.gov/pubmed/33002063
http://dx.doi.org/10.1371/journal.ppat.1008929
work_keys_str_mv AT genoulamelanie fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT marinfrancojoseluis fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT maiomariano fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT dolotowiczbelen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT ferreyramalena fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT milillomayelen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT mascarauremi fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT moranaeduardojose fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT palmerodomingo fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT matteomario fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT fuentesfederico fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT lopezbeatriz fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT barrionuevopaula fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT neyrollesolivier fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT cougouleceline fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT lugovillarinogeanncarlo fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT verolletchristel fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT sasiainmariadelcarmen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation
AT balboaluciana fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation