Cargando…
Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation
The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabol...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553279/ https://www.ncbi.nlm.nih.gov/pubmed/33002063 http://dx.doi.org/10.1371/journal.ppat.1008929 |
_version_ | 1783593567332073472 |
---|---|
author | Genoula, Melanie Marín Franco, José Luis Maio, Mariano Dolotowicz, Belén Ferreyra, Malena Milillo, M. Ayelén Mascarau, Rémi Moraña, Eduardo José Palmero, Domingo Matteo, Mario Fuentes, Federico López, Beatriz Barrionuevo, Paula Neyrolles, Olivier Cougoule, Céline Lugo-Villarino, Geanncarlo Vérollet, Christel Sasiain, María del Carmen Balboa, Luciana |
author_facet | Genoula, Melanie Marín Franco, José Luis Maio, Mariano Dolotowicz, Belén Ferreyra, Malena Milillo, M. Ayelén Mascarau, Rémi Moraña, Eduardo José Palmero, Domingo Matteo, Mario Fuentes, Federico López, Beatriz Barrionuevo, Paula Neyrolles, Olivier Cougoule, Céline Lugo-Villarino, Geanncarlo Vérollet, Christel Sasiain, María del Carmen Balboa, Luciana |
author_sort | Genoula, Melanie |
collection | PubMed |
description | The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies. |
format | Online Article Text |
id | pubmed-7553279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75532792020-10-21 Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation Genoula, Melanie Marín Franco, José Luis Maio, Mariano Dolotowicz, Belén Ferreyra, Malena Milillo, M. Ayelén Mascarau, Rémi Moraña, Eduardo José Palmero, Domingo Matteo, Mario Fuentes, Federico López, Beatriz Barrionuevo, Paula Neyrolles, Olivier Cougoule, Céline Lugo-Villarino, Geanncarlo Vérollet, Christel Sasiain, María del Carmen Balboa, Luciana PLoS Pathog Research Article The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies. Public Library of Science 2020-10-01 /pmc/articles/PMC7553279/ /pubmed/33002063 http://dx.doi.org/10.1371/journal.ppat.1008929 Text en © 2020 Genoula et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Genoula, Melanie Marín Franco, José Luis Maio, Mariano Dolotowicz, Belén Ferreyra, Malena Milillo, M. Ayelén Mascarau, Rémi Moraña, Eduardo José Palmero, Domingo Matteo, Mario Fuentes, Federico López, Beatriz Barrionuevo, Paula Neyrolles, Olivier Cougoule, Céline Lugo-Villarino, Geanncarlo Vérollet, Christel Sasiain, María del Carmen Balboa, Luciana Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title | Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title_full | Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title_fullStr | Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title_full_unstemmed | Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title_short | Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation |
title_sort | fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via hif-1α activation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553279/ https://www.ncbi.nlm.nih.gov/pubmed/33002063 http://dx.doi.org/10.1371/journal.ppat.1008929 |
work_keys_str_mv | AT genoulamelanie fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT marinfrancojoseluis fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT maiomariano fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT dolotowiczbelen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT ferreyramalena fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT milillomayelen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT mascarauremi fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT moranaeduardojose fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT palmerodomingo fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT matteomario fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT fuentesfederico fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT lopezbeatriz fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT barrionuevopaula fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT neyrollesolivier fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT cougouleceline fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT lugovillarinogeanncarlo fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT verolletchristel fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT sasiainmariadelcarmen fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation AT balboaluciana fattyacidoxidationofalternativelyactivatedmacrophagespreventsfoamcellformationbutmycobacteriumtuberculosiscounteractsthisprocessviahif1aactivation |