Cargando…

Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries

Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuri...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, John, de Souza, Joel P., Hopstaken, Marinus, Ott, John A., Bedell, Stephen W., Sadana, Devendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553342/
https://www.ncbi.nlm.nih.gov/pubmed/33083748
http://dx.doi.org/10.1016/j.isci.2020.101586
_version_ 1783593582274281472
author Collins, John
de Souza, Joel P.
Hopstaken, Marinus
Ott, John A.
Bedell, Stephen W.
Sadana, Devendra K.
author_facet Collins, John
de Souza, Joel P.
Hopstaken, Marinus
Ott, John A.
Bedell, Stephen W.
Sadana, Devendra K.
author_sort Collins, John
collection PubMed
description Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Ω∗cm(2) SC-PCS-resistivity (900 cycles); 160 μm LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles).
format Online
Article
Text
id pubmed-7553342
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-75533422020-10-19 Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries Collins, John de Souza, Joel P. Hopstaken, Marinus Ott, John A. Bedell, Stephen W. Sadana, Devendra K. iScience Article Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Ω∗cm(2) SC-PCS-resistivity (900 cycles); 160 μm LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles). Elsevier 2020-09-20 /pmc/articles/PMC7553342/ /pubmed/33083748 http://dx.doi.org/10.1016/j.isci.2020.101586 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Collins, John
de Souza, Joel P.
Hopstaken, Marinus
Ott, John A.
Bedell, Stephen W.
Sadana, Devendra K.
Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title_full Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title_fullStr Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title_full_unstemmed Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title_short Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
title_sort diffusion-controlled porous crystalline silicon lithium metal batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553342/
https://www.ncbi.nlm.nih.gov/pubmed/33083748
http://dx.doi.org/10.1016/j.isci.2020.101586
work_keys_str_mv AT collinsjohn diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries
AT desouzajoelp diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries
AT hopstakenmarinus diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries
AT ottjohna diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries
AT bedellstephenw diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries
AT sadanadevendrak diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries