Cargando…
Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries
Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553342/ https://www.ncbi.nlm.nih.gov/pubmed/33083748 http://dx.doi.org/10.1016/j.isci.2020.101586 |
_version_ | 1783593582274281472 |
---|---|
author | Collins, John de Souza, Joel P. Hopstaken, Marinus Ott, John A. Bedell, Stephen W. Sadana, Devendra K. |
author_facet | Collins, John de Souza, Joel P. Hopstaken, Marinus Ott, John A. Bedell, Stephen W. Sadana, Devendra K. |
author_sort | Collins, John |
collection | PubMed |
description | Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Ω∗cm(2) SC-PCS-resistivity (900 cycles); 160 μm LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles). |
format | Online Article Text |
id | pubmed-7553342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75533422020-10-19 Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries Collins, John de Souza, Joel P. Hopstaken, Marinus Ott, John A. Bedell, Stephen W. Sadana, Devendra K. iScience Article Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Ω∗cm(2) SC-PCS-resistivity (900 cycles); 160 μm LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles). Elsevier 2020-09-20 /pmc/articles/PMC7553342/ /pubmed/33083748 http://dx.doi.org/10.1016/j.isci.2020.101586 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Collins, John de Souza, Joel P. Hopstaken, Marinus Ott, John A. Bedell, Stephen W. Sadana, Devendra K. Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title | Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title_full | Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title_fullStr | Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title_full_unstemmed | Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title_short | Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries |
title_sort | diffusion-controlled porous crystalline silicon lithium metal batteries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553342/ https://www.ncbi.nlm.nih.gov/pubmed/33083748 http://dx.doi.org/10.1016/j.isci.2020.101586 |
work_keys_str_mv | AT collinsjohn diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries AT desouzajoelp diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries AT hopstakenmarinus diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries AT ottjohna diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries AT bedellstephenw diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries AT sadanadevendrak diffusioncontrolledporouscrystallinesiliconlithiummetalbatteries |