Cargando…
A Fundamental Study Assessing the Diagnostic Performance of Deep Learning for a Brain Metastasis Detection Task
PURPOSE: Increased use of deep convolutional neural networks (DCNNs) in medical imaging diagnosis requires determinate evaluation of diagnostic performance. We performed the fundamental investigation of diagnostic performance of DCNNs using the detection task of brain metastasis. METHODS: We retrosp...
Autores principales: | Noguchi, Tomoyuki, Uchiyama, Fumiya, Kawata, Yusuke, Machitori, Akihiro, Shida, Yoshitaka, Okafuji, Takashi, Yokoyama, Kota, Inaba, Yosuke, Tajima, Tsuyoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553808/ https://www.ncbi.nlm.nih.gov/pubmed/31353336 http://dx.doi.org/10.2463/mrms.mp.2019-0063 |
Ejemplares similares
-
A fundamental study assessing the generalized fitting method in conjunction with every possible coalition of N-combinations (G-EPOC) using the appendicitis detection task of computed tomography
por: Noguchi, Tomoyuki, et al.
Publicado: (2021) -
The usefulness of vertebral needle targeting simulation training system using ray-summation imaging: experimental study
por: Uchiyama, Fumiya, et al.
Publicado: (2022) -
Accuracy of vertebral puncture in percutaneous vertebroplasty
por: Noguchi, Tomoyuki, et al.
Publicado: (2021) -
Computed tomography surveillance helps tracking COVID-19 outbreak
por: Machitori, Akihiro, et al.
Publicado: (2020) -
Correction to: Computed tomography surveillance helps tracking COVID‑19 outbreak
por: Machitori, Akihiro, et al.
Publicado: (2020)