Cargando…
Data based predictive models for odor perception
Machine learning and data analytics are being increasingly used for quantitative structure property relation (QSPR) applications in the chemical domain where the traditional Edisonian approach towards knowledge-discovery have not been fruitful. The perception of odorant stimuli is one such applicati...
Autores principales: | Chacko, Rinu, Jain, Deepak, Patwardhan, Manasi, Puri, Abhishek, Karande, Shirish, Rai, Beena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553929/ https://www.ncbi.nlm.nih.gov/pubmed/33051564 http://dx.doi.org/10.1038/s41598-020-73978-1 |
Ejemplares similares
-
Zero-shot transfer learned generic AI models for prediction of optimally ripe climacteric fruits
por: Dutta, Jayita, et al.
Publicado: (2023) -
Leveraging long short-term memory (LSTM)-based neural networks for modeling structure–property relationships of metamaterials from electromagnetic responses
por: Pillai, Prajith, et al.
Publicado: (2021) -
Information Extraction and Graph Representation for the Design of Formulated Products
por: Sunkle, Sagar, et al.
Publicado: (2020) -
Bilateral and unilateral odor processing and odor perception
por: Dalal, Tal, et al.
Publicado: (2020) -
Disrupted Odor Perception
por: Hummel, Thomas, et al.
Publicado: (2017)