Cargando…
Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet
In this article, a computational Haar wavelet collocation technique is developed for the solution of linear delay integral equations. These equations include delay Fredholm, Volterra and Volterra-Fredholm integral equations. First we transform the derived estimates for these equations. After that, w...
Autores principales: | Amin, Rohul, Shah, Kamal, Asif, Muhammad, Khan, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553982/ https://www.ncbi.nlm.nih.gov/pubmed/33083601 http://dx.doi.org/10.1016/j.heliyon.2020.e05108 |
Ejemplares similares
-
Efficient Numerical Algorithm for the Solution of Eight Order Boundary Value Problems by Haar Wavelet Method
por: Amin, Rohul, et al.
Publicado: (2021) -
Utilization of Haar wavelet collocation technique for fractal-fractional order problem
por: Shah, Kamal, et al.
Publicado: (2023) -
Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations
por: Darweesh, Amer, et al.
Publicado: (2023) -
Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative
por: Shah, Kamal, et al.
Publicado: (2020) -
Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations
por: Mohammad, Mutaz
Publicado: (2019)