Cargando…
MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Ne...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554024/ https://www.ncbi.nlm.nih.gov/pubmed/33083756 http://dx.doi.org/10.1016/j.isci.2020.101601 |
_version_ | 1783593726969380864 |
---|---|
author | Fischer, Christian A. Besora-Casals, Laura Rolland, Stéphane G. Haeussler, Simon Singh, Kritarth Duchen, Michael Conradt, Barbara Marr, Carsten |
author_facet | Fischer, Christian A. Besora-Casals, Laura Rolland, Stéphane G. Haeussler, Simon Singh, Kritarth Duchen, Michael Conradt, Barbara Marr, Carsten |
author_sort | Fischer, Christian A. |
collection | PubMed |
description | While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6(ATP13A2) mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis. |
format | Online Article Text |
id | pubmed-7554024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75540242020-10-19 MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology Fischer, Christian A. Besora-Casals, Laura Rolland, Stéphane G. Haeussler, Simon Singh, Kritarth Duchen, Michael Conradt, Barbara Marr, Carsten iScience Article While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6(ATP13A2) mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis. Elsevier 2020-09-29 /pmc/articles/PMC7554024/ /pubmed/33083756 http://dx.doi.org/10.1016/j.isci.2020.101601 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fischer, Christian A. Besora-Casals, Laura Rolland, Stéphane G. Haeussler, Simon Singh, Kritarth Duchen, Michael Conradt, Barbara Marr, Carsten MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title | MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title_full | MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title_fullStr | MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title_full_unstemmed | MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title_short | MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology |
title_sort | mitosegnet: easy-to-use deep learning segmentation for analyzing mitochondrial morphology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554024/ https://www.ncbi.nlm.nih.gov/pubmed/33083756 http://dx.doi.org/10.1016/j.isci.2020.101601 |
work_keys_str_mv | AT fischerchristiana mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT besoracasalslaura mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT rollandstephaneg mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT haeusslersimon mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT singhkritarth mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT duchenmichael mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT conradtbarbara mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology AT marrcarsten mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology |