Cargando…

MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology

While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Christian A., Besora-Casals, Laura, Rolland, Stéphane G., Haeussler, Simon, Singh, Kritarth, Duchen, Michael, Conradt, Barbara, Marr, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554024/
https://www.ncbi.nlm.nih.gov/pubmed/33083756
http://dx.doi.org/10.1016/j.isci.2020.101601
_version_ 1783593726969380864
author Fischer, Christian A.
Besora-Casals, Laura
Rolland, Stéphane G.
Haeussler, Simon
Singh, Kritarth
Duchen, Michael
Conradt, Barbara
Marr, Carsten
author_facet Fischer, Christian A.
Besora-Casals, Laura
Rolland, Stéphane G.
Haeussler, Simon
Singh, Kritarth
Duchen, Michael
Conradt, Barbara
Marr, Carsten
author_sort Fischer, Christian A.
collection PubMed
description While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6(ATP13A2) mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
format Online
Article
Text
id pubmed-7554024
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-75540242020-10-19 MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology Fischer, Christian A. Besora-Casals, Laura Rolland, Stéphane G. Haeussler, Simon Singh, Kritarth Duchen, Michael Conradt, Barbara Marr, Carsten iScience Article While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6(ATP13A2) mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis. Elsevier 2020-09-29 /pmc/articles/PMC7554024/ /pubmed/33083756 http://dx.doi.org/10.1016/j.isci.2020.101601 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fischer, Christian A.
Besora-Casals, Laura
Rolland, Stéphane G.
Haeussler, Simon
Singh, Kritarth
Duchen, Michael
Conradt, Barbara
Marr, Carsten
MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title_full MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title_fullStr MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title_full_unstemmed MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title_short MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
title_sort mitosegnet: easy-to-use deep learning segmentation for analyzing mitochondrial morphology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554024/
https://www.ncbi.nlm.nih.gov/pubmed/33083756
http://dx.doi.org/10.1016/j.isci.2020.101601
work_keys_str_mv AT fischerchristiana mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT besoracasalslaura mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT rollandstephaneg mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT haeusslersimon mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT singhkritarth mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT duchenmichael mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT conradtbarbara mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology
AT marrcarsten mitosegneteasytousedeeplearningsegmentationforanalyzingmitochondrialmorphology