Cargando…
MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Ne...
Autores principales: | Fischer, Christian A., Besora-Casals, Laura, Rolland, Stéphane G., Haeussler, Simon, Singh, Kritarth, Duchen, Michael, Conradt, Barbara, Marr, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554024/ https://www.ncbi.nlm.nih.gov/pubmed/33083756 http://dx.doi.org/10.1016/j.isci.2020.101601 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
Brain SegNet: 3D local refinement network for brain lesion segmentation
por: Hu, Xiaojun, et al.
Publicado: (2020)